涓浗绉戝闄㈡暟瀛︿笌绯荤粺绉戝鐮旂┒闄㈡湡鍒婄綉

Acta Mathematica Sinica, Chinese Series 鈥衡�� 2011, Vol. 54 鈥衡�� Issue (5): 861-874.DOI: 10.12386/A2011sxxb0087

鈥� Articles 鈥� Previous Articles     Next Articles

The Isolated Scattering Number of Graphs

Shi Ying WANG1, Yu Xing YANG2, Shang Wei LIN1, Jing LI1, Zhi Ming HU1   

  1. 1. School of Mathematical Science, Shanxi University, Taiyuan, 030006, P. R. China
    2. School of Computer Science and Technology, Shanxi University,Taiyuan 030006, P. R. China
  • Received:2010-08-23 Revised:2011-04-02 Online:2011-09-15 Published:2011-09-15

鍥剧殑瀛ょ珛鏂搴�

鐜嬩笘鑻�1, 鏉ㄧ帀鏄�2, 鏋椾笂涓�1, 鏉庢櫠1, 鑳″織鏄�1   

  1. 1. 灞辫タ澶у鏁板绉戝瀛﹂櫌 澶師 030006
    2. 灞辫タ澶у璁$畻鏈轰笌淇℃伅鎶�鏈闄� 澶師 030006
  • 鍩洪噾璧勫姪:

    鍥藉鑷劧绉戝鍩洪噾璧勫姪椤圭洰(61070229)

Abstract: The isolated scattering number isc(G) = max{i(G - S) - |S| : SC(G)}, where G is a connected graph, i(G - S) is the number of isolated vertices of G - S and C(G) is the set of vertex cuts of G. In this paper, we investigate the relationships between the isolated scattering number and other parameters of a graph G, and discuss the graphs with special isolated scattering numbers. We prove that the isolated scattering numbers of a cycle, a connected bipartite graph, the join of connected bipartite graphs and the complement of a tree and a cycle are minimal, and give the maximum and minimum isolated scattering numbers of trees with given order and maximum degree.  

Key words: networks, vulnerability, isolated scattering number

鎽樿锛� 杩為�氬浘G鐨勫绔嬫柇瑁傚害isc(G)=max{i(G-S)-|S|: SC(G)}, 鍏朵腑i(G-S)鏄�G-S涓殑瀛ょ珛鐐规暟, C(G)鏄�G鐨勭偣鍓查泦.鏈枃鐮旂┒浜嗗绔嬫柇瑁傚害鍜屽浘鐨勫叾瀹冧竴浜涘弬鏁扮殑鍏崇郴.璁ㄨ浜嗗绔嬫柇瑁傚害鍙栫壒娈婂�肩殑涓�浜涘浘,璇佹槑浜嗗湀銆佽繛閫氫簩閮ㄥ浘銆佽繛閫氫簩閮ㄥ浘鐨勮仈鍥句互鍙婃爲鍜屽湀鐨勮ˉ鍥剧殑瀛ょ珛鏂搴﹂兘杈惧埌鏈�灏�.缁欏嚭浜嗗叿鏈夌粰瀹氶樁鏁板拰鏈�澶у害鐨勬爲鐨勬渶澶с�佹渶灏忓绔嬫柇瑁傚害.  

鍏抽敭璇�: 缃戠粶, 鍙潬鎬�, 瀛ょ珛鏂搴�

CLC Number: