Dedekind和及第一类Chebyshev多项式
The Dedekind Sums and First Kind Chebyshev Polynomials
本文利用分析方法、Dedekind和及第一类Chebyshev多项式的算术性质,研究了一类关于Dedekind和及第一类Chebyshev多项式混合均值的渐近估计问题,并得到了一个较强的渐近公式.
We use the analysis method, the arithmetical properties of Dedekind sums and first kind Chebyshev polynomials to study the asymptotic estimation problem of one kind hybrid mean value involving the Dedekind sums and the first kind Chebyshev polynomials. At last, we obtain a sharp asymptotic formula for it.
Dedekind和 / 第一类Chebyshev多项式 / 混合均值 {{custom_keyword}} /
Dedekind sums / the first kind Chebyshev polynomials / hybrid mean value {{custom_keyword}} /
[1] Rademacher H., On the transformation of log η(τ), Journal of the Indian Mathematical Society, 1955, 19: 25–30.
[2] Rademacher H., Dedekind Sums, Carus Mathematical Monographs, The Mathematical Association of America, Washington D.C., 1972.
[3] Apostol T. M., Modular Functions and Dirichlet Series in Number Theory, Springer-Verlag, New York, 1976.
[4] Conrey J. B., Fransen E., Klein R. and Scott C., Mean values of Dedekind sums, Journal of Number Theory, 1996, 56(2): 214–226.
[5] Zhang W. P., A note on the mean square value of the Dedekind sums, Acta Mathematica Hungarica, 2000, 86(4): 275–289.
[6] Zhang W. P., On the mean values of Dedekind Sums, Journal de Théorie des Nombres de Bordeaux, 1996, 8(2): 429–442.
[7] Zhang W. P., A sum analogous to Dedekind sums and its hybrid mean value formula, Acta Arithmetica, 2003, 107: 1–8.
[8] Carlitz L., The reciprocity theorem of Dedekind Sums, Pacific Journal of Mathematics, 1953, 3(3): 513–522.
[9] Li X. X., Some identities involving Chebyshev polynomials, Mathematical Problems in Engineering, 2015(2015), Article ID 950695.
[10] Ma Y. K., Lv X. X., Several identities involving the reciprocal sums of Chebyshev polynomials, Mathematical Problems in Engineering, 2017(2017), Article ID 4194579.
[11] Clemente C., Identities and generating functions on Chebyshev polynomials, Georgian Mathematical Journal, 2012, 19(3): 427–440.
[12] Lee C. L., Wong K. B., On Chebyshev's Polynomials and Certain Combinatorial Identities, Bulletin of The Malaysian Mathematical Sciences Society, 2011, 2(2): 279–286.
[13] Wang T. T., Zhang H., Some identities involving the derivative of the first kind Chebyshev polynomials, Mathematical Problems in Engineering, 2015, Article ID 146313.
[14] Bircan N., Pommerenke C., On Chebyshev polynomials and GL(2, Z/pZ), Bulletin mateématiques de la Sociétédes sciences mathématiques de Roumanie, 2012, 4(4): 353–364.
[15] Yi Y., Zhang W. P., Some identities involving the Fibonacci polynomials, The Fibonacci Quarterly, 2002, 40(4): 314–318.
[16] Kim D. S., Kim T., Lee S., Some identities for Bernoulli polynomials involving Chebyshev polynomials, Journal of Computational Analysis & Applications, 2012, 16(1): 172–180.
[17] Kim T., Kim D. S., Seo J., et al., Some identities of Chebyshev polynomials arising from non-linear differential equations. Journal of Computational Analysis & Applications, 2016, 23(5): 820–832.
[18] He Y., Some new results on products of Apostol–Bernoulli and Apostol–Euler polynomials, Journal of Mathematical Analysis & Applications, 2015, 431(1): 34–46.
国家自然科学基金资助项目(11771351);陕西省自然科学基础研究计划(2018JQ1093);渭南师范学院自然科学类研究项目(16YKS003);西安航空学院校级科研项目(2018KY0208)
/
〈 | 〉 |