
函数域的双重根式扩域及素除子的密度
On the Double Radical Extensions of Algebraic Function Fields and Density of Prime Divisors
设K/Fq是整体函数域,l是与q互素的素数,ζl是K的固定代数闭包中的本原l次单位根. 对于a,b∈K*-(K*)l,本文主要讨论了根式扩域K(l√a)与K(l√a,l√b)的性质, 利用Kummer理论给出了K(l√a)/K与K(l√a,l√b)/K不是几何扩张的充要条件.当a,b是l-无关时, 对于K的素除子P及对应的离散赋值环OP, 利用这两类扩张的性质,通过分析a,b生成循环群(OP/P)*的充要条件,本文明确给出了满足使得a,b生成循环群(OP/P)*的全体素除子集合Ma,b的Dirichlet密度公式.
Let K/Fq be a global function field over the finite field Fq,and l be a prime number different from the characteristic of K. Denote by ζl a primitive l-th root of unity in a fixed algebraic closure of K. For two given elements a,b ∈ K*-(K*)l, we study in this paper the properties of radical extensions K(l√a) and K(l√a,l√b) of K. By the Kummer theory, we give a necessary and sufficient condition for K(l√a)/K and K(l√a,l√b)/K being not geometric extensions. Suppose that a,b ∈ K* - (K*)l are l-independent. For a prime divisor P of K and the corresponding discrete valuation ring OP, a necessary and sufficient condition for a,b,generating cyclic group (OP/P)* is presented by the properties of the above two function fields extensions. With the help of results obtained, the Dirichlet density of Ma,b, which is the set of prime divisors of K such that cyclic group (OP/P)* can be generated by a,b, is given explicitly in this paper.
函数域 / 根式扩张 / Kummer理论 / Dirichlet密度 {{custom_keyword}} /
function fields / radical extension / Kummer theory / Dirichlet density {{custom_keyword}} /
[1] Birch B. J., Cyclotomic Fields and Kummer Extensions, In: Cassels J. W. S., Fröhlich, eds., Algebraic Number Theory, Academic Press, New York, 1967, 85–93.
[2] Hooley C., On Artin's conjecture, J. Reine Angew. Math., 1967, 225: 209–220.
[3] Murty M. R., On Artin's conjecture, J. Number Theory, 1983, 16: 147–168.
[4] Murty M. R., An analogue of Artin's conjecture for abelian extensions, J. Number Theory, 1984, 18: 241–248.
[5] Murty M. R., Artin's conjecture for primitive roots, Math. Intelligencer, 1988, 10: 59–67.
[6] Bilharz H., Primdivisoren mit vorgegebener primitivwurzel, Math. Ann., 1937, 114: 476–492.
[7] Lang S., Trotter H., Primitive points on elliptic curves, Bull. Amer. Math. Soc., 1977, 83: 289–291.
[8] Hsu C. N., On Artin's conjecture for the Carlitz modules, Compos. Math., 1997, 106: 247–266.
[9] Hsu C. N., On Artin's conjecture for rank one Drinfeld modules, J. Number Theory, 2001, 88: 157–174.
[10] Yao W. C., Yu J., On primitive roots for Carlitz modules, J. Number Theory, 2003, 100: 88–103
[11] Yao W. C., Yu J., On primitive roots for rank one Drinfeld modules, J. Number Theory, 2010, 130: 370–385.
[12] Rosen M., Number Theory in Function Fields, Grad. Texts in Math., Vol. 210, Springer-Verlag, New York, 2002.
[13] Stichtenoth H., Algebraic Function Fields and Codes, Springer-Verlag, Heidelberg, 2009.
国家自然科学基金资助项目(11601009);安徽省自然科学基金资助项目(1608085QA04)
/
〈 |
|
〉 |