具非自治微小扰动的脉冲方程三个古典解的存在性

刘健, 赵增勤, 于文广

数学学报 ›› 2019, Vol. 62 ›› Issue (3) : 441-448.

PDF(423 KB)
PDF(423 KB)
数学学报 ›› 2019, Vol. 62 ›› Issue (3) : 441-448. DOI: 10.12386/A2019sxxb0041
论文

具非自治微小扰动的脉冲方程三个古典解的存在性

    刘健1, 赵增勤2, 于文广3
作者信息 +

The Existence of Triple Classical Solutions to Impulsive Problems with Small Non-autonomous Perturbations

    Jian LIU1, Zeng Qin ZHAO2, Wen Guang YU3
Author information +
文章历史 +

摘要

在半直线无穷区间上,我们研究具有微小非自治扰动项的脉冲方程边值问题的古典解,应用变分方法和相应的临界点理论得到了三个古典解的存在性.

Abstract

We study the existence of solutions to nonlinear impulsive boundary value problems with small non-autonomous perturbations on the half-line. We show the existence of at least three distinct classical solutions by using variational methods and a three critical points theorem.

关键词

半直线 / 非自治扰动 / 三解

Key words

half-line / non-autonomous perturbation / triple solutions

引用本文

导出引用
刘健, 赵增勤, 于文广. 具非自治微小扰动的脉冲方程三个古典解的存在性. 数学学报, 2019, 62(3): 441-448 https://doi.org/10.12386/A2019sxxb0041
Jian LIU, Zeng Qin ZHAO, Wen Guang YU. The Existence of Triple Classical Solutions to Impulsive Problems with Small Non-autonomous Perturbations. Acta Mathematica Sinica, Chinese Series, 2019, 62(3): 441-448 https://doi.org/10.12386/A2019sxxb0041

参考文献

[1] Chen H., Sun J., An application of variational method to second-order impulsive differential equation on the half-line, Appl. Math. Comput., 2010, 217:1863-1869.
[2] Bonanno G., Marano S. A., On the structure of the critical set of non-differentiable functions with a weak compactness condition, Appl. Anal., 2010, 89:1-10.
[3] Bonanno G., Riccobono G., Multiplicity results for Sturm-Liouville boundary value problems, Appl. Math. Comput., 2009, 210:294-297.
[4] Bonanno G., Chinn? A., Existence of three solutions for a perturbed two-point boundary value problem, Appl. Math. Lett., 2010, 23:807-811.
[5] Liu J., Zhao Z., Variational approach to existence of weak solutions to second-order singular impulsive problems, Acta Math. Sci. Ser. A, 2016, 36(3):521-530.
[6] Liu J., Zhao Z., Variational approach to second-order damped Hamiltonian systems with impulsive effects, J. Nonlinear Sci. Appl., 2016, 9:3459-3472.
[7] Liu J., Zhao Z., Existence of positive solutions to a singular boundary-value problem using variational methods, Electro. J. Differ. Equ., 2014, 135:1-9.
[8] Liu J., Zhao Z., An application of variational methods to second order impulsive differential equation with derivative dependence, Electro. J. Differ. Equ., 2014, 62:1-13.
[9] Liu J., Zhao Z., Existence of classical solutions to impulsive problems under Cerami condition, Acta Math. Sinica, Chin. Ser., 2016, 59(5):609-622.
[10] Nieto J., O'Regan D., Variational approach to impulsive differential equations, Nonlinear Anal., 2009, 10:680-690.
[11] Nieto J., Variational formulation of a damped Dirichlet impulsive problem, Appl. Math. Lett., 2010, 23:940-942.
[12] Sun J., Chen H., Variational method to the impulsive equation with Neumann boundary conditions, Bound.Value Probl., 2009, 2009, Article ID 316812, 17 pages.
[13] Tian Y., Ge W., Variational methods to Sturm-Liouville boundary value problem for impulsive differential equations, Nonlinear Anal., 2010, 72:277-287.
[14] Tian Y., Ge W., Applications of variational methods to boundary value problem for impulsive differential equations, Proc. Edinburgh Math. Soc., 2008, 51:509-527.

基金

国家自然科学基金(11571197,11301303,11601269);教育部人文社会科学研究项目(16YJC630070);山东省自然科学基金(ZR2017MA048,ZR2018MG002);泰山学者工程专项经费项目(tsqn20161041);山东省高等学校科技计划项目(J16LI11);山东省高等学校优势学科人才团队培育计划(1716009)和山东财经大学青年优秀人才支持计划

PDF(423 KB)

378

Accesses

0

Citation

Detail

段落导航
相关文章

/