Dirichlet空间上Bergman型Toeplitz算子的代数性质
Algebraic Properties of Bergman-Type Toeplitz Operators on the Dirichlet Space
本文讨论了Dirichlet空间上由调和函数诱导的Bergman型Toeplitz算子的基本性质和代数性质,包括此类算子的自伴性、乘积性质、交换性及可逆性,并计算了算子的谱.
We study preliminary properties and algebraic properties of Bergman-type Toeplitz operators which are induced by harmonic symbols on the Dirichlet space, including self-adjointness, products, commutativity and invertibility. Moreover, the spectra of the Toeplitz operator are calculated.
Toeplitz算子 / Dirichlet空间 / 自伴性 / 交换性 / 可逆性 {{custom_keyword}} /
Toeplitz operators / Dirichlet space / self-adjointness / commutativity / invertibility {{custom_keyword}} /
[1] Brown A., Halmos P. R., Algebraic properties of Toeplitz operators, J. Reine Angew. Math., 2009, 1964(213):89-102.
[2] Cao G. F., Fredholm properties of Toeplitz operators on Dirichlet spaces, Pacific J. Math., 1999, 188(2):209-224.
[3] Chartrand R., Toeplitz operator on Dirichlet-type space, J. Operator Theory, 2002, 48(1):3-13.
[4] Chen Y., Commuting Toeplitz operators on the Dirichlet space, J. Math. Anal. Appl., 2009, 357(2):214-224.
[5] Chen Y., Lee Y. J., Nguyen Q. D., Algebraic properties of Toeplitz operators on the harmonic Dirichlet space, Integral Equ. Oper. Theory, 2011, 69(2):183-201.
[6] Duistermaat J. J., Lee Y. J., Toeplitz operators on the Dirichlet space, J. Math. Anal. Appl., 2004, 300(1):54-67.
[7] Lee Y. J., Algebraic properties of Toeplitz operators on the Dirichlet space, J. Math. Anal. Appl., 2007, 329(2):1316-1329.
[8] Qin J., Huang S., The Bergman-Type Toeplitz Operator on Dirichlet Space, Acta. Math. Sin. Chin. Ser., 2018, 61(4):619-624.
[9] Yu T., Toeplitz operator on the Dirichlet space, Integral Equ. Oper. Theory, 2010, 67(2):163-170.
[10] Zhao L. K., Commutativity of Toeplitz operators on the harmonic Dirichlet space, J. Math. Anal. Appl., 2008, 339(2):1148-1160.
国家自然科学基金资助项目(11501068);重庆市教委科研项目(KJ1600302)
/
〈 | 〉 |