θ型C-Z算子在加权变指数Morrey空间上的有界性

杨沿奇, 陶双平

数学学报 ›› 2019, Vol. 62 ›› Issue (3) : 503-514.

PDF(530 KB)
PDF(530 KB)
数学学报 ›› 2019, Vol. 62 ›› Issue (3) : 503-514. DOI: 10.12386/A2019sxxb0047
论文

θ型C-Z算子在加权变指数Morrey空间上的有界性

    杨沿奇, 陶双平
作者信息 +

Boundedness of θ-type C-Z Operators on Weighted Variable Exponent Morrey Spaces

    Yan Qi YANG, Shuang Ping TAO
Author information +
文章历史 +

摘要

在满足一定的正则性假设条件下,建立了θ型Calderón-Zygmund算子Tθ在一类变指数Lebesgue空间上的加权有界性.进一步得到了Tθ在加权变指数Herz空间和Herz-Morrey空间上的有界性.另外,还证明了相应的交换子[b,Tθ]在广义加权变指数Morrey空间上是有界的.

Abstract

We obtain some boundedness results for the θ-type Calderón-Zygmund operators Tθ under natural regularity assumptions on a class of generalized Lebesgue spaces with weight and variable exponent. Furthermore, the boundedness of Tθ is established on the weighted variable Herz and Herz-Morrey spaces based on the above conclusions. We also prove the boundedness of the corresponding commutator[b, Tθ] in the generalized weighted Morrey spaces with variable exponent.

关键词

&theta / 型Calderó / n-Zygmund算子 / 加权变指数Morrey空间 / 加权变指数Herz-Morrey空间

Key words

θ-type Calderón-Zygmund operator / weighted variable exponent Morrey space / weighted variable exponent Herz-Morrey space

引用本文

导出引用
杨沿奇, 陶双平. θ型C-Z算子在加权变指数Morrey空间上的有界性. 数学学报, 2019, 62(3): 503-514 https://doi.org/10.12386/A2019sxxb0047
Yan Qi YANG, Shuang Ping TAO. Boundedness of θ-type C-Z Operators on Weighted Variable Exponent Morrey Spaces. Acta Mathematica Sinica, Chinese Series, 2019, 62(3): 503-514 https://doi.org/10.12386/A2019sxxb0047

参考文献

[1] Acerbi E., Mingione G., Regularity results for stationary electrorheological fluids, Arch. Ration. Mech. Anal., 2002, 164:213-259.
[2] Acerbi E., Mingione G., Gradient estimates for a class of parabolic systems, Duke. Math. J., 2007, 136:285-320.
[3] Alveraez J., Pérez C., Estimates with A weights for various singular integral operators, Boll. Un. Mat. Ital., 1994, 1:123-133.
[4] Cruz-Uribe D., Fiorenza A., Martell J. M., Pérez C., The boundedness of classical operators on variable Lp spaces, Ann. Acad. Sci. Fenn. Math., 2006, 31:239-264.
[5] Cruz-Uribe D., Fiorenza A., Neugebauer C. J., Weighted norm inequalities for the maximal operators on variable Lebesgue spaces, J. Math. Anal. Appl., 2012, 394:744-760.
[6] Cruz-Uribe D., Wang L. A. D., Extrapolation and weighted norm inequalities in the variable Lebesgue spaces, Trans. Amer. Math. Soc., 2017, 369:1205-1235.
[7] Calderón A. P., Zygmund A., On the existence of certain singular integrals, Acta Math., 1952, 88:85-139.
[8] Diening L., Hästö P., Muckenhoupt weights in variable exponent spaces, 2011, Preprint.
[9] Diening L., Harjulehto P., Hästö P., Ru?i?ka M., Lebesgue and Sobolev Space with Variable Exponents, Lecture Notes in Mathematics, Splinger-Verlag, 2011, 2017.
[10] Diening L., Ru?i?ka M., Calderón-Zygmund operators on generalized Lebesgue spaces Lp and problem related to fluid dynamics, J. Reine. Angew. Math., 2003, 563:197-220.
[11] Hung C., Lee M., The boundedness of Calderón-Zygmund operators by wavelet characterization, Acta Mathematica Sinica, English Series, 2012, 28:1237-1248.
[12] Izuki M., Herz and amalgam spaces with variable exponent, the Haar wavelets and greediess of the wavelet system, East. J. Approx., 2009, 15:87-109.
[13] Izuki M., Boundededness of vector-valued sublinear operators on Herz-Morrey spaces with variable exponent, Math. Sci. Res. J., 2009, 13:243-253.
[14] Izuki M., Vector-valued inequalities on Herz spaces and characterizations of Herz-Sobolev spaces with variable exponent, Glasnik Mat., 2010, 45:475-503.
[15] Izuki M., Fractional integrals on Herz-Morrey spaces with variable exponent, Hiroshima Math. J., 2010, 40:343-355.
[16] Izuki M., Boundedness of commutators on Herz spaces with variable exponent, Rend. Cir. Mat. Palermo, 2010, 59:199-213.
[17] Izuki M., Boundedness of sublinear operators on Herz spaces with variable exponent and applications to wavelet characterization, Anal. Math., 2010, 36:33-50.
[18] Izuki M., Noi T., Boundedness of fractional integrals on weighted Herz spaces with variable exponent, J. Inequal. Appl., 2016, Article ID 199(2016).
[19] Izuki M., Noi T., An intrinsic square function on weighted Herz spaces with variable exponent, J. Math. Inequal., 2017, 11:799-816.
[20] Kopaliani T. S., Infimal convolution and Muckenhoupt Ap(·) condition in variable Lp spaces, Arch. Math., 2007, 2:185-192.
[21] Karlovich A. Y., Lerner A. K., Commutators of singular integrals on generalized Lp spaces with variable exponent, Publ. Mat., 2005, 49:111-125.
[22] Kokilashvili V., Meskhi A., Boundedness of maximal and singular operators in Morrey spaces with variable exponent, Arm. J. Math., 2008, 1:18-28.
[23] Ková?ik O., Rákosník J., On spaces Lp(x) and wk,p(x), Czechoslovak Math. J., 1991, 41:592-618.
[24] Kokilashvili V., Samko S., Singular integrals in weighted Lebesgue spaces with variable exponent, Georgian Math. J., 2003, 1:145-156.
[25] Lan J., Weak type endpoint estimates for multilinear θ-type Calderón-Zygmund operators, Acta Mathematicae Applicatae Sinica, English Series, 2005, 21:615-622.
[26] Lu S., Xu L., Boundedness of rough singular integral operators on the homogeneous Morrey-Herz spaces, Hokkaido Math. J., 2005, 34:299-314.
[27] Lu S., Yang D., Hardy-Littlewood-Sobolev theorems of fractional intergration on Herz-type spaces and its applications, Canad. J. Math., 1996, 48:363-380.
[28] Lu S., Yang D., Hu G., Herz type spaces and their applications, Science Press, Beijing, 1996.
[29] Lin Y., Zhang G., Weighted estimates for commutators of strongly singular Calderón-Zygmund operators, Acta Mathematica Sinica, English Series, 2016, 32:1297-1311.
[30] Nekvinda A., Hardy-Littlewood maximal operator on Lp(x)(Rn), Math. Inequal. Appl. J., 2004, 7:255-265.
[31] Quek T., Yang D.,On weighted weak hardy spaces over Rn, Acta Math. Sinica, English Series, 2000, 16:141-160.
[32] Ri C., Zhang Z., Boundedness of θ-type Calderón-Zygmund operators on Hardy spaces with non-doubling measures, Journal of inequalities and Applications, 2015, 323:1-10.
[33] Ri C., Zhang Z., Boundedness of θ-type Calderón-Zygmund operators on non-homogeneous metric measure spaces, Front. Math. China, 2016, 11:141-153.
[34] Tao S., Li L., Boundedness of Marcinkiewicz integrals and commutators on Morrey spaces with variable exponent, Chinese Journal of Contemporary Mathematics, 2016, 37:53-68.
[35] Vagif S., Hasanov Javanshir J., Xayyam B. A., Maximal and singular integral operators and their commutators on generalized weighted Morrey spaces with variable exponent, Mathematical Inequalities and Applications, 2018, 1:41-61.
[36] Wang H., Boundedness of θ-type Calderón-zygmund operators and commutators in the generalized weighted weak Morrey spaces, Journal of Function Spaces, 2016, Article ID 1309348.
[37] Wang L., Tao S., Boundedness of Littlewood-Paley operators and their commutators on Herz-Morrey spaces with variable exponent, J. Inequal. Appl., 2014, 227:1-17.
[38] Wang L., Tao S., Parameterized Littlewood-Paley operators and their commutators on Lebesgue spaces with variable exponent, Anal. Theory Appl., 2015, 31:13-24.
[39] Wang L., Tao S., Parameterized Littlewood-Paley operators and their commutators on Herz spaces with variable exponent, Turkish J. Math., 2016, 40:122-145.
[40] Xie R., Shu L., On multilinear commutators of θ-type Calderón-Zygmund operators, Analysis in Theory and Applications, 2008, 24:260-270.
[41] Xie R., Shu L., Lp boundedness of for the maximal multilinear singular integral operator of θ-type Calderón-Zygmund kernel, J. Sys. Sci. and Math. Scis., 2009, 29:519-526.
[42] Yabuta K., Generalizations of Calderón-Zygmund operators, Studia Mathematica, 1985, 82:17-31.
[43] Zhang P., Xu H., Sharp weighted estimates for commutators of Calderón-Zygmund operators type operators, Acta Mathematica Sinica, 2005, 48:625-636.

基金

国家自然科学基金资助项目(11561062)

PDF(530 KB)

411

Accesses

0

Citation

Detail

段落导航
相关文章

/