广义Fock空间上的Hankel算子
Hankel Operators on Generalized Fock Spaces
利用有界(消失)平均振荡函数的性质,本文刻画了一类广义Fock空间上的Hankel算子的有界性(紧性),同时,还刻画了换位子[Mf,P]的有界性和紧性,其中P是一个Toeplitz投影算子,而Mf表示符号为f的乘子.最后,应用Berezin变换来研究了BMO空间和VMO空间的几何性质.
We characterize boundedness and compactness of Hankel operators on a very general class of weighted Fock spaces over Cn in terms of a certain notion of bounded and vanishing mean oscillation. The analogous description holds for the commutators[Mf, P] where Mf denotes the multiplication operator with symbol f and P is the Toeplitz projection. We also give geometric descriptions for the spaces BMO and VMO which are defined in terms of the Berezin transform.
广义Fock空间 / Hankel算子 / Berezin变换 {{custom_keyword}} /
Generalized Fock space / Hankel operator / Berezin transform {{custom_keyword}} /
[1] Bauer W., Mean oscillation and Hankel operators on the Segal-Bargmann space, Integr. Equ. Oper. Theory, 2005, 52:1-15.
[2] Bekolle D., Berger C., Coburn L., et al., BMO in the Bergman metric on bounded symmetric domains, J. Funct. Anal., 1990, 93:310-350.
[3] Berger C., Coburn L., Toeplitz operators and quantum mechanics, J. Funct. Anal., 1986, 68:273-299.
[4] Berger C., Coburn L., Toeplitz operators on the Segal-Bargmann space, Trans. Amer. Math. Soc., 1987, 301:813-829.
[5] Berger C., Coburn L., Heat flow and Berezin-Toeplitz estimates, Amer. J. Math., 1994, 116:563-590.
[6] Berndtsson B., Ortega-Cerdà J., On interpolation and sampling in Hilbert spaces of analytic functions, J. Reine Angew. Math., 1995, 464:109-128.
[7] Cao G., Wang X., Zhu K., BMO and Hankel operators on Fock-type spaces, J. Geom. Anal., 2015, 25:1650-1665.
[8] Christ M., On the ∂ equation in weighted L2 norms in C1, J. Geom. Anal., 1991, 1:193-230.
[9] Coburn L., Isralowitz J., Li B., Toeplitz operators with BMO symbols on the Segal-Bargmann space, Trans. Amer. Math. Soc., 2011, 363:3015-3030.
[10] Delin H., Pointwise estimates for the weighted Bergman projection kernel in Cn, using a weighted L2 estimate for the ∂ equation, Ann. Inst. Fourier Grenoble, 1998, 48:967-997.
[11] Hu Z., Lv X., Toeplitz operators on Fock spaces Fp(φ), Integr. Equ. Oper. Theory, 2014, 80:33-59.
[12] Isralowitz J., Compactness and essential norm properties of operators on generalized Fock spaces, arXiv:1305.7475, 2013.
[13] Isralowitz J., Zhu K., Toeplitz operators on the Fock space, Integr. Equ. Oper. Theory, 2012, 72:363-392.
[14] Janson S., Peetre J., Rochberg R., Hankel forms and the Fock space, Rev. Mat. Iberoamericana, 1987, 3:61-138.
[15] Lindholm N., Sampling in weighted Lp spaces of entire functions in Cn and estimates of the Bergman kernel, J. Funct. Anal., 2001, 182:390-426.
[16] Mengestie T., Product of Volterra type integral and composition operators on weighted Fock spaces, J. Geom. Anal., 2014, 24:740-755.
[17] Ortega-Cerdrà J., Seip K., Beurling-type density theorems for weighted Lp spaces of entire functions, J. Anal. Math., 1998, 75:247-266.
[18] Perälä A., Schuster A., Virtanen J., Hankel operators on Fock spaces, In:Operator Theory, Advances and Applications, 2014, Vol. 236:377-390.
[19] Schneider G., Hankel operators with anti-holomorphic symbols on the Fock space, Proc. Amer. Math. Soc., 2004, 132:2399-2409.
[20] Schuster A., Varolin D., Toeplitz operators and Carleson measures on Generalized Bargmann-Fock spaces, Integr. Equ. Oper. Theory, 2010, 66:593-611.
[21] Seip K., Youssfi E., Hankel operators on Fock spaces and related Bergman kernel estimates, J. Geom. Anal., 2013, 23:170-201.
[22] Zhu K., Operator Theory in the Function Spaces, 2nd ed., Mathematical Surveys and Monographs, Vol. 138, American Mathematical Society, 2007.
[23] Zhu K., Analysis on Fock Spaces, Springer Verlag, New York, 2012.
国家自然科学基金资助项目(11471084;11301101);广东省青年创新人才项目(2017KQNCX220);肇庆学院校级课题项目(201732);肇庆学院博士启动项目(221622)
/
〈 | 〉 |