
次线性期望下的一般中心极限定理
General Central Limit Theorems Under Sublinear Expectations
受Peng-中心极限定理的启发,本文主要应用G-正态分布的概念,放宽Peng-中心极限定理的条件,在次线性期望下得到形式更为一般的中心极限定理.首先,将均值条件E[Xn]=E[Xn]=0放宽为|E[Xn]|+|E[Xn]|=O(1/n);其次,应用随机变量截断的方法,放宽随机变量的2阶矩与2+δ阶矩条件;最后,将该定理的Peng-独立性条件进行放宽,得到卷积独立随机变量的中心极限定理.
Inspired by the central limit theorem established by Peng, we investigate the generalized central limit theorem under sublinear expectations based on three weaker conditions with the notion of G-normal distribution. Initially, the condition E[Xn]=E[Xn]=0 is replaced by|E[Xn]|+|E[Xn]|=O(1/n). Furthermore, the original 2-nd and (2+δ)-th moments conditions are weakened through the truncation of random variables. Finally, we develop the theorem for convolutionary random variables, which can be seen as a generalization of Peng-independence.
中心极限定理 / 卷积独立随机变量 / G-正态分布 / 独立随机变量 / 次线性期望 {{custom_keyword}} /
central limit theorems / convolutionary random variables / G-normal distribution / independent random variables / sublinear expectations {{custom_keyword}} /
[1] Chareka P., The central limit theorem for capacities, Statistics and Probability Letters, 2009, 79(12):1456- 1462.
[2] Chen Z., Chen T., Davison M., Choquet expectation and Peng's g-expectation, The Annals of Probability, 2005, 33(3):1179-1199.
[3] Chen Z. Epstein L., Ambiguity, risk and asset returns in continuous time, Econometrica, 2002, 70(4):1403- 1443.
[4] Chen Z., Hu F., A law of the iterated logarithm under sublinear expectations, Journal of Financial Engineering, 2014, 1:1450015.
[5] Choquet G., Theory of capacities, Annales de I'institut Fourier, 1954, 5:131-295.
[6] Coquet F., Hu Y., Mémin J., et al., Filtration-consistent nonlinear expectations and related g-expectations, Probability Theory and Related Fields, 2002, 123(1):1-27.
[7] Epstein L., Seo K., A central limit theorem for belief functions, 2011, in preparation.
[8] Hu F., Zhang D., Central limit theorem for capacities, Comptes Rendus Mathematique, 2010, 348(19/20):1111-1114.
[9] Li M., Shi Y., A general central limit theorem under sublinear expectations, Science China Mathematics, 2010, 53(8):1989-1994.
[10] Peng S., G-expectation, G-Brownian Motion and Related Stochastic Calculus of Itô Type, Stochastic Analysis and Applications, Springer, Berlin, 2007:541-567.
[11] Peng S., Nonlinear expectations and stochastic calculus under uncertainty-with robust central limit theorem and G-Brownian motion, preprint, arXiv:1002.4546, 2010.
[12] Schmeidler D., Subjective probability and expected utility without additivity, Econometrica, 1989, 57:571- 587.
[13] Terán P., Counterexamples to a central limit theorem and a weak law of large numbers for capacities, Statistics and Probability Letters, 2015, 96:185-189.
[14] Wakker P., Testing and characterizing properties of nonadditive measures through violations of the sure-thing principle, Econometrica, 2001, 69(4):1039-1059.
[15] Wang L., On the regularity theory of fully nonlinear parabolic equations I, Communications on Pure and Applied Mathematics, 1992, 45(1):27-76.
[16] Wang L., On the regularity theory of fully nonlinear parabolic equations Ⅱ, Communications on Pure and Applied Mathematics, 1992, 45(2):141-178.
[17] Wu P., Chen Z., Invariance principles for the law of the iterated logarithm under G-framework, Science in China-Mathematics, 2015, 58(6):1251-1264.
[18] Zhang D., Chen Z., A weighted central limit theorem under sublinear expectations, Communications in Statistics-Theory and Methods, 2014, 43(3):566-577.
[19] Zhang N., Lan Y., A comparison theorem under sublinear expectations and related limit theorems, arXiv:1710.01624math.PR, 2017.
[20] Zong G., Research about non-linear expectation and related questions (in Chinese), Dissertation for Doctoral Degree, 2015:40-43.
国家自然科学基金资助项目(11601280);上海财经大学中央高校基本科研业务费专项资金(2017110072)
/
〈 |
|
〉 |