广义映射Schrödinger-Virasoro代数的二上同调群

王松, 王晓明

数学学报 ›› 2019, Vol. 62 ›› Issue (4) : 633-640.

PDF(355 KB)
PDF(355 KB)
数学学报 ›› 2019, Vol. 62 ›› Issue (4) : 633-640. DOI: 10.12386/A2019sxxb0058
论文

广义映射Schrödinger-Virasoro代数的二上同调群

    王松, 王晓明
作者信息 +

Second Cohomology Groups of the Generalized Map Schrödinger-Virasoro Algebras

    Song WANG Xiao, Ming WANG
Author information +
文章历史 +

摘要

该文给出了广义映射Schrödinger-Virasoro代数的所有二上同调群,并且给出了这类李代数的所有泛中心扩张.

Abstract

The second cohomology groups of the generalized map Schrödinger-Virasoro algebras are determined. And the universal central extensions of the generalized map Schrödinger-Virasoro algebras are given.

关键词

Schrödinger-Virasoro代数 / 二上循环 / 中心扩张

Key words

Schrödinger-Virasoro algebra / 2-cocycle / Central extension

引用本文

导出引用
王松, 王晓明. 广义映射Schrödinger-Virasoro代数的二上同调群. 数学学报, 2019, 62(4): 633-640 https://doi.org/10.12386/A2019sxxb0058
Song WANG Xiao, Ming WANG. Second Cohomology Groups of the Generalized Map Schrödinger-Virasoro Algebras. Acta Mathematica Sinica, Chinese Series, 2019, 62(4): 633-640 https://doi.org/10.12386/A2019sxxb0058

参考文献

[1] Chen H., Fan G., Han J., et al., Derivations, automorphisms and second cohomology of generalized loop Schrödinger-Virasoro algebras, arXiv:1509.01916, 2015.
[2] Henkel M., Schrödinger invariance and strongly anisotropic critical systems, J. Stat. Phys., 1994, 75:1023- 1029.
[3] Henkel M., Unterberger J., Schrödinger invariance andspace-time symmetries, Nucl. Phys. B, 2003, 660:407-412.
[4] Roger C., Unterberger J., The Schrödinger-Virasoro Lie group and algebra:representation theory and cohomological study, Ann. Henri Poincaré, 2006, 7:1477-1529.
[5] Su Y., Wu H., Wang S., Yue X., Structures of generalized map Virasoro algebras, Symmetries and Groups in Contemporary Physics, in Proceedings of the XXIX International Colloquium on Group-Theoretical Methods in Physics, Tianjin, China, World Scientific, 2013:505-510.
[6] Tan S., Zhang X., Automorphisms and Verma modules for generalized Schrödinger-Virasoro algebras, J. Algebra, 2009, 322:1379-1394.
[7] Tan S., Zhang X., Unitary representations for the Schrödinger-Virasoro Lie algebra, J. Algebra Appl., 2013, 12:1250132, 16pp.
[8] Wang W., Li J., Xin B., Central Extensions and Derivations of Generalized Schrödinger-Virasoro algebra, Algebra Colloq, 2012, 19:735-744.
[9] Wang W., Li J., Xu Y., Derivation algebra and automorphism of the twisted deformative Schrödinger- Virasoro Lie algebra, Comm. Algebra, 2012, 40:3365-3388.
[10] Wu H., Wang S., Yue X., Structures of generalized loop Virasoro algebras, Comm. Algebra, 2014, 42:1545- 1558.

基金

国家自然科学基金资助项目(11501359)

PDF(355 KB)

391

Accesses

0

Citation

Detail

段落导航
相关文章

/