
Gorenstein Prüfer整环的一些新刻画
Some Characterizations of Gorenstein Prüfer Domains
设R是整环.众所周知,R是Prüfer整环当且仅当每个可除模是FP-内射模当且仅当每个h-可除模是FP-内射模.本文引进了一种新的GorensteinFP-内射模,并且证明了R是Gorenstein Prüfer整环当且仅当每个可除模是Gorenstein FP-内射模,当且仅当每个h-可除模是GorensteinFP-内射模.
It is well known that a domain R is a Prüfer domain if and only if every divisible module is FP-injective; if and only if every h-divisible module is FP-injective. In this paper, we introduce the concept of Gorenstein FP-injective modules, and show that a domain R is a Gorenstein Prüfer domain if and only if every divisible module is Gorenstein FP-injective; if and only if every h-divisible module is Gorenstein FPinjective.
Gorenstein FP-内射模 / Gorenstein Prü / fer整环 / 可除模 / h-可除模 {{custom_keyword}} /
Gorenstein FP-injective modules / Gorenstein Prüfer Domains / divisible modules / h-divisible modules {{custom_keyword}} /
[1] Bazzoni S., Salce L., Almost perfect domains, Colloq. Math., 2003, 95(2):285-301.
[2] Bennis D., A note on Gorenstein flat dimensions, Algebra Colloq., 2011, 18(1):155-161.
[3] Bennis D., Mahdou N., Global Gorenstein dimensions, Proc. Amer. Math. Soc., 2010, 138(2):461-465.
[4] Bennis D., Weak Gorenstein Global dimensions, International Electronic J. Algebra, 2010, 8:140-152.
[5] Colly R. R., Rings which have flat injective modules, J. Algebra, 1975, 35:239-252.
[6] Chase S. U., Direct products of moudles, Trans. Amer. Math. Soc., 1960, 97:457-473.
[7] Ding N, Q., Chen J. L., Coherent rings with finite self-FP-injective dimension, Comm. Algebra, 1996, 24(9):2963-2980.
[8] Ding N. Q., Chen J. L., On copure flat modules and flat resolvents, Comm. Algebra, 1996, 24(3):1071-1081.
[9] Ding N. Q., Li Y. L., Mao L. X., Strongly Gorenstein flat modules, J. Aust. Math. Soc., 2009, 86:323-338.
[10] Enochs E. E., Jenda O. M. G., Copure injective resolutions, flat resolvents and dimensions, Comment Math. Univ. Carolin., 1993, 34(2):203-211.
[11] Enochs E. E., Jenda O. M. G., Gorenstein injective and projective modules, Math. Z., 1995, 220(4):611-633.
[12] Enochs E. E., Jenda O. M. G., Relative Homological Algebra, Walter de Gruyter Exp. Math., Vol. 30, Berlin, New York, 2000.
[13] Enochs E. E., Jenda O. M. G., Lopez-ramos J. A., The existence of Gorenstein flat covers, Math. SCAND., 2004, 94:46-62.
[14] Faith C., Walker E. A., Direct-sum representations of injective modules, J. Algebra, 1967, 5:203-221,
[15] Fu X. H., Ding N. Q., On strongly copure flat modules and copure flat dimensions, Comm. Algebra, 2010, 38:4531-4544.
[16] Fu X. H., Zhu H. Y., Ding N. Q., On Copure Projective modules and Copure Projective Dimensions, Comm. Algebra, 2012, 40:343-359.
[17] Fuchs L., Lee S. B., Weak-injectivity and almost perfect domains, J. Algebra, 2009, 321(1):18-27.
[18] Gao Z. H., Wang F. G., All Gorenstein hereditary rings are coherent, J. Pure Appl. Algebra, 2014, 13:1350140-1-1350140-5.
[19] Gabelli S., Houston E., Coherentlike conditions in pullbacks, Michigan Math. J., 1997, 44(1):99-123.
[20] Holm H., Gorenstein homological dimensions, J. Pure Appl. Algebra, 2004, 189(1-3):167-193.
[21] Hamsher R., On the structure of a one dimensional quotient field, J. Algebra, 1971, 19:416-425.
[22] Lee S. B., h-divisible modules, Comm. Algebra, 2003, 31:513-525.
[23] Lee S. B., Weak-injective modules, Comm. Algebra, 2006, 34:361-370.
[24] Mao L. X., Ding N. Q., Relative copure injective modules and copure flat modules, J. Pure Appl. Algebra, 2007, 208:635-646.
[25] Mahdou N., Tamekkante M., On (strongly) Gorenstein (semi)hereditary rings, Arab J. Sci. Eng., 2011, 36:431-440.
[26] Mahdou N,, Tamekkante M., Strongly Gorenstein flat modules and dimensions, Chin. Ann. Math., 2011, 32B(4):533-548.
[27] Qiao L., Wang F. G., A Gorenstein analogue of a result of Bertin, J. Pure Appl. Algebra, 2015, 14(2):1550019-1-1550019-13.
[28] Rotman J. J., An Introduction to Homological Algebra, New York:Academic Press, 1979.
[29] Xiong T., A characterization of Gorenstein Dedekind domains, International Electronic J. Algebra, 2017, 22:97-102.
[30] Xiong T., Gorenstein semihereditary rings and Gorenstein Prüfer domains, International Electronic J. Algebra, 2017, 22:45-61.
[31] Xiong T., Rings of copure projective dimension one, J. Korean Math. Soc., 2017, 54(2):427-440.
[32] Xiong T., Wang F. G., Hu K., Xia G. L., et al., The Change of Rings for Copure Flat Dimensions, Journal of Heilongjiang University (Natural Science), 2016, 33(4):435-437.
[33] Xiong T., Wang F. G., Hu K., Copure Projective Modules and CPH-rings, Journal of Sichuan Normal University, 2013, 36(2):198-201.
[34] Journal of Sichuan Normal UniversityYang G., Liu Z. K., Liang L., Ding projective and Ding injective modules, Algebra Colloq., 2013, 20(4):601-612.
国家自然科学基金资助项目(11671283);国家自然科学基金青年科学基金资助项目(11701398);教育部博士点科研基金资助项目(20125134110002);西华师范大学博士科研启动项目(17E087)
/
〈 |
|
〉 |