半直线伸缩调制框架集

李云章, 王雅慧

数学学报 ›› 2020, Vol. 63 ›› Issue (1) : 45-60.

PDF(652 KB)
PDF(652 KB)
数学学报 ›› 2020, Vol. 63 ›› Issue (1) : 45-60. DOI: 10.12386/A2020sxxb0004
论文

半直线伸缩调制框架集

    李云章, 王雅慧
作者信息 +

The Dilation-and-Modulation Frame Sets on the Half Real Line

    Yun Zhang LI, Ya Hui WANG
Author information +
文章历史 +

摘要

本文研究右半直线平方可积函数空间L2(R+)中的一类伸缩调制系.实际问题中时间变量不可取负值,L2(R+)可模拟因果信号空间.但因R+按加法不能作成一个群,它不容许小波与Gabor系.我们研究L2(R+)中由特征函数生成的伸缩调制系(MD-系)框架,引入了R+MD-框架集的概念,利用"伸缩等价"与"基数函数"方法刻画了L2(R+)中MD-Bessel集与完备集;得到了关于MD-Riesz基集的两个充分条件,并证明了通过对MD-Riesz基集进行有限可测分解可得到MD-框架集.

Abstract

This paper addresses a class of dilation-and-modulation (MD) systems in the space L2(R+) of square integrable functions defined on the right half real line R+. In practice, the time variable cannot be negative. L2(R+) models the causal signal space, but it admits no wavelet and Gabor systems due to R+ being not a group under addition. We study the dilation-and-modulation systems in L2(R+) generated by characteristic functions. We introduce the notion of MD-frame sets in R+. Using "dilation-equivalence" and "cardinality function" methods we characterize MD-Bessel and complete sets; obtain two sufficient conditions for MD-Riesz basis sets; and prove that an arbitrary finite and measurable decomposition of an MD-Riesz basis set leads to an MD-frame set.

关键词

伸缩调制系 / 框架 / Riesz基

Key words

dilation-and-modulation system / frame / Riesz basis

引用本文

导出引用
李云章, 王雅慧. 半直线伸缩调制框架集. 数学学报, 2020, 63(1): 45-60 https://doi.org/10.12386/A2020sxxb0004
Yun Zhang LI, Ya Hui WANG. The Dilation-and-Modulation Frame Sets on the Half Real Line. Acta Mathematica Sinica, Chinese Series, 2020, 63(1): 45-60 https://doi.org/10.12386/A2020sxxb0004

参考文献

[1] Arambaši? L., Baki? D., Raji? R., Dimension functions, scaling sequences, and wavelet sets, Studia Math., 2010, 198:1-32.
[2] Auscher P., Solution of two problems on wavelets, J. Geom. Anal., 1995, 5:181-236.
[3] Baggett L. W. H., Medina A., Merrill K. D., Generalized multi-resolution analyses and a construction procedure for all wavelet sets in Rn, J. Fourier Anal. Appl., 1999, 5:563-573.
[4] Benedetto J. J., Benedetto R. L., The Construction of Wavelet Sets, Wavelets and Multiscale Analysis, Appl. Numer. Harmon. Anal., Birkhäuser, Boston, 2011:17-56.
[5] Benedetto J. J., Sumetkijakan S., Tight frames and geometric properties of wavelet sets, Adv. Comput. Math., 2006, 24:35-56.
[6] Benedetto J. J., King E. J., Smooth functions associated with wavelet sets on Rd, d ≥ 1, and frame bound gaps, Acta Appl. Math., 2009, 107:121-142.
[7] Bownik M., Ross K., The structure of translation-invariant spaces on locally compact abelian groups, J. Fourier Anal. Appl., 2015, 21:849-884.
[8] Cabrelli C., Paternostro V., Shift-invariant spaces on LCA groups, J. Funct. Anal., 2010, 258:2034-2059.
[9] Casazza P., Kalton N., Roots of complex polynomials and Weyl-Heisenberg frames, Proc. Amer. Math. Soc., 2002, 130:2313-2318.
[10] Christensen O., An Introduction to Frames and Riesz Bases, Springer, Birkhäuser, 2016.
[11] Christensen O., Goh S. S., Fourier-like frames on locally compact abelian groups, J. Approx. Theory, 2015, 192:82-101.
[12] Dai X., Diao Y., Gu Q., et al., Frame wavelet sets in Rd, J. Comput. Appl. Math., 2003, 155:69-82.
[13] Dai X., Diao Y., Gu Q., Frame wavelets with frame set support in the frequency domain, Illinois J. Math., 2004, 48:539-558.
[14] Dai X., Diao Y., Gu Q., et al., The existence of subspace wavelet sets, J. Comput. Appl. Math., 2003, 155:83-90.
[15] Dai X., Larson D. R., Wandering vectors for unitary systems and orthogonal wavelets, Mem. Amer. Math. Soc., 1998, 134:68.
[16] Dai X., Larson D. R., Speegle D. M., Wavelet sets in Rn, J. Fourier Anal. Appl., 1997, 3:451-456.
[17] Dai X. R., Sun Q., The abc-problem for Gabor systems, Mem. Amer. Math. Soc., 2016, 244:99.
[18] Fang X., Wang X., Construction of minimally supported frequency wavelets, J. Fourier Anal. Appl., 1995, 2:315-327.
[19] Feichtinger H. G., Gröchenig K. H., Banach spaces related to integrable group representations and their atomic decompositions, I. J. Funct. Anal., 1989, 86:307-340.
[20] Feichtinger H. G., Strohmer T., Gabor Analysis and Algorithms, Theory and Applications, Birkhäuser, Boston, 1998.
[21] Feichtinger H. G., Strohmer T., Advances in Gabor Analysis, Birkhäuser, Boston, 2003.
[22] Fu X., Gabardo J. P., Construction of wavelet sets using integral self-affine multi-tiles, J. Fourier Anal. Appl., 2014, 20:234-257.
[23] Gabardo J. P., Yu X. J., Construction of wavelet sets with certain self-similarity properties, J. Geom. Anal., 2004, 14:629-651.
[24] Gröchenig K., Foundations of Time-Frequency Analysis, Birkhäuser, Boston, 2001.
[25] Gu Q., Han D., When a characteristic function generates a Gabor frame, Appl. Comput. Harmon. Anal., 2008, 24:290-309.
[26] Han B., Framelets and Wavelets, Algorithms, Analysis, and Applications, Cham, Springer, 2017.
[27] Han D., Larson, D.R., Frames, bases and group representations, Mem. Amer. Math. Soc., 2000, 147:94.
[28] Heil C., A Basis Theory Primer, Expanded edition, Birkhäuser, New York, 2011.
[29] Heil C., History and evolution of the density theorem for Gabor frames, J. Fourier Anal. Appl., 2007, 13:113-166.
[30] Hernández E., Weiss G., A First Course on Wavelets, Boca Raton, CRC Press, 1996.
[31] Hernández E., Wang X., Weiss G., Smoothing minimally supported frequency (MSF) wavelets:Part I, J. Fourier Anal. Appl., 1996, 2:329-340.
[32] Hernández E., Wang X., Weiss G., Smoothing minimally supported frequency wavelets:Part II, J. Fourier Anal. Appl., 1997, 3:23-41.
[33] Ionascu E. J., Larson D. R., Pearcy C. M., On wavelet sets, J. Fourier Anal. Appl., 1998, 4:711-721.
[34] Ionascu E. J., A new construction of wavelet sets, Real Anal. Exchange, 2002, 28:593-609.
[35] Ionascu E. J., Wang Y., Simultaneous translational and multiplicative tiling and wavelet sets in R2, Indiana Univ. Math. J., 2006, 55:1935-1949.
[36] Jakobsen M. S., Lemvig J., Reproducing formulas for generalized translation invariant systems on locally compact abelian groups, Trans. Amer. Math. Soc., 2016, 368:8447-8480.
[37] Janssen A. J. E. M., Representations of Gabor frame Operators, Twentieth Century Harmonic Analysis-A Celebration (Il Ciocco, 2000), NATO Sci. Ser. II Math. Phys. Chem., 33, Kluwer Acad. Publ., Dordrecht, 2001, 73-101.
[38] Janssen A. J. E. M., Zak transforms with few zeros and the tie, Advances in Gabor Analysis, Appl. Numer. Harmon. Anal., Birkhäuser, Boston, MA, 2003:31-70.
[39] Kutyniok G., Labate D., The theory of reproducing systems on locally compact abelian groups, Colloq. Math., 2006, 106:197-220.
[40] Li Y. Z., Wang Y. H., The density theorem of a class of dilation-and-modulation systems on the half real line, arXiv:1712.02606.
[41] Li Y. Z., Zhang W., Dilation-and-modulation systems on the half real line, J. Inequal. Appl., 2016, 186:11.
[42] Li Y. Z., Zhang W., Multi-window dilation-and-modulation frames on the half real line, Sci. China Math., 2017, doi:10.1007/s11425-018-9468-8.
[43] Seip K., Regular sets of sampling and interpolation for weighted Bergman spaces, Proc. Amer. Math. Soc., 1993, 117:213-220.
[44] Volkmer H., Frames of wavelets in Hardy space, Analysis, 1995, 15:405-421.
[45] Wang Y. H., Li Y. Z., A class of vector-valued dilation-and-modulation frames on the half real line, Math. Meth. Appl. Sci., 2018, 41:3900-3912.
[46] Young R. M., An Introduction to Nonharmonic Fourier Series, Academic Press, New York, 1980.
[47] Yu X. J., Gabardo J. P., Nonuniform wavelets and wavelet sets related to one-dimensional spectral pairs, J. Approx. Theory, 2007, 145:133-139.

基金

国家自然科学基金资助项目(11971043)

PDF(652 KB)

547

Accesses

0

Citation

Detail

段落导航
相关文章

/