广义n-赋范空间中的Vogt定理

马玉梅

数学学报 ›› 2020, Vol. 63 ›› Issue (4) : 329-334.

PDF(357 KB)
PDF(357 KB)
数学学报 ›› 2020, Vol. 63 ›› Issue (4) : 329-334. DOI: 10.12386/A2020sxxb0028
论文

广义n-赋范空间中的Vogt定理

    马玉梅
作者信息 +

The Vogt Theorem in G-n-normed Spaces

    Yu Mei MA
Author information +
文章历史 +

摘要

本文推广Vogt定理到广义n-赋范空间,即证明了两个广义n-赋范空间之间的保持ρ-诱导距离映射是仿射的.

Abstract

In this paper, we generalize Vogt theorem in G-n-normed spaces:A mapping between two G-n-normed spaces which preserves ρ-gauge distance is affine.

关键词

保持&rho / -诱导距离 / 等距 / n-赋范 / 广义n-赋范 / 2-共线

Key words

preserving ρ-gauged distance / isometry / n-norm / G-n-norm / 2-collinear

引用本文

导出引用
马玉梅. 广义n-赋范空间中的Vogt定理. 数学学报, 2020, 63(4): 329-334 https://doi.org/10.12386/A2020sxxb0028
Yu Mei MA. The Vogt Theorem in G-n-normed Spaces. Acta Mathematica Sinica, Chinese Series, 2020, 63(4): 329-334 https://doi.org/10.12386/A2020sxxb0028

参考文献

[1] Aleksandrov A. D., Mappings of families of sets, Soviet Math. Dokl., 1970, 190(3):116-120.
[2] Chen X., Song M., Characterizations on isometries in linear n-normed spaces, Nonl. Anal., 2010, 72(3):1895-1901.
[3] Chu H., Choi S., Kang D., Mapping of conservative distance in linear n-normed spaces, Nonlinear Anal., 2009, 70(3):1168-1174.
[4] Chu H., Lee K., Park C., On the Aleksandrov problem in linear n-normed spaces, Nonlinear Anal., 2004, 59(7):1001-1011.
[5] Ekariani S., Gunawan H., Idris M., A contractive mapping theorem on the n-normed space of p-summable sequences, J. Math. Anal. Appl., 2013, 4(1):1-7.
[6] Gao J., On the Aleksandrov problem of distance preserving mapping, J. Math. Anal. Appl., 2009, 352:583-590.
[7] Gähler S., Lineare 2-normierte Räume (in German), Math. Nachr., 1965, 28:1-43.
[8] Huang X., Tan D., Mappings of preserving n-distance one in n-normed spaces, Aequat. Math., 2018, 92(3):401-413.
[9] Jia W., On the mappings preserving equality of 2-distance, Quaest. Math., 2010, 33(1):11-20.
[10] Ma Y., The Aleksandrov problem for unit distance preserving mapping, Acta Math. Sci. Ser. B Engl. Ed., 2000, 20(3):359-364.
[11] Ma Y., Isometriy on linear n-normed spaces, Ann. Acad. Sci. Fenn. Math., 2014, 39(2):973-981.
[12] Ma Y., The Aleksandrov problem and the Mazue-Ulam theorem on linear n-normed space, Bull. Korean Math. Soc., 2013, 50(5):1631-1637.
[13] Ma Y., Isometry on linear n-G-quasi normed spaces, Canad. Math. Bull., 2017, 60(2):350-363.
[14] Mazur S., Ulam S., Sur les transformationes isométriques d'espaces vectoriels normés (in Frcech), C. R. Acad. Sci., 1932, 194:946-948.
[15] Misiak A., n-inner product spaces, Math. Nach., 1989, 140(1):299-319.
[16] Park C., Rassias T. M., Isometries on linear n-normed spaces, J. Ineq. Pure. Appl. Math., 2006, 7(5):1-17.
[17] Park C., Cihangir A., A new version of Mazur-Ulam theorem under weaker conditions in linear n-normed spaces, J. Comp. Anal. Appl., 2014, 16(1):827-832.
[18] Park C., Rassias T. M., Isometric additive in generalized quasi-Banach spaces, Banach J. Math. Anal., 2008, 2(1):59-69.
[19] Rassias T. M., Šemrl P., On the Mazur-Ulam theorem and the Aleksandrov problem for unit distance preserving mappings, Proc. Amer. Math. Soc., 1993, 118(3):919-925.
[20] Vogt A., Maps which preserve equality of distance, Stud. Math., 1973, 45(1):43-48.
[21] Zheng F., Ren W., The Aleksandrov problem in quasi convex normed linear space, Acta Sci. Natur. Nankai Univ., 2014, 47(3):49-56.

PDF(357 KB)

Accesses

Citation

Detail

段落导航
相关文章

/