具有一般齐次核多维的半离散Hardy-Hilbert型不等式

黄启亮, 杨必成

数学学报 ›› 2020, Vol. 63 ›› Issue (5) : 427-442.

PDF(522 KB)
PDF(522 KB)
数学学报 ›› 2020, Vol. 63 ›› Issue (5) : 427-442. DOI: 10.12386/A2020sxxb0037
论文

具有一般齐次核多维的半离散Hardy-Hilbert型不等式

    黄启亮, 杨必成
作者信息 +

An Extended Multidimensional Half-discrete Hardy-Hilbert-type Inequality with Homogeneous Kernel

    Qi Liang HUANG, Bi Cheng YANG
Author information +
文章历史 +

摘要

利用权函数、转换公式和实分析技巧,给出一个具有一般齐次核和最佳常数因子的多维半离散Hardy-Hilbert型不等式,它是一个已知结果的推广.此外,还讨论了等价形式、算子表示以及几种特殊应用例子.

Abstract

By the use of the weight functions, the transfer formula and the technique of real analysis, an extended multidimensional half-discrete Hardy–Hilbert-type inequality with a general homogeneous kernel and a best possible constant factor is given, which is an extension of a published result. Moreover, the equivalent forms, a few particular cases and the operator expressions with some examples are considered.

关键词

半离散Hardy-Hilbert型不等式 / 权函数 / 等价形式 / 算子 / 范数

Key words

half-discrete Hardy-Hilbert-type inequality / weight function / equivalent form / operator / norm

引用本文

导出引用
黄启亮, 杨必成. 具有一般齐次核多维的半离散Hardy-Hilbert型不等式. 数学学报, 2020, 63(5): 427-442 https://doi.org/10.12386/A2020sxxb0037
Qi Liang HUANG, Bi Cheng YANG. An Extended Multidimensional Half-discrete Hardy-Hilbert-type Inequality with Homogeneous Kernel. Acta Mathematica Sinica, Chinese Series, 2020, 63(5): 427-442 https://doi.org/10.12386/A2020sxxb0037

参考文献

[1] Azar L., On some extensions of Hardy-Hilbert's inequality and applications, Journal of Inequalities and Applications, 2008, No. 546829. 14pp.
[2] Benyi A., Oh C. T., Best constant for certain multilinear integral operator, Journal of Inequalities and Applications, 2006, No. 28582. 12pp.
[3] Hardy G. H., Littlewood J. E., Pólya G., Inequalities, Cambridge University Press, Cambridge, 1934.
[4] Hong Y., On Hardy-Hilbert integral inequalities with some parameters, J. Inequal Pure Appl. Math., 2005, 6(4):Art. 92, 10pp.
[5] Krni? M., Pe?ari? J. E., Hilbert's inequalities and their reverses, Publ. Math. Debrecen, 2005, 67(3-4):315-331.
[6] Krni? M., Pe?ari? J. E., Vukovi? P., On some higher-dimensional Hilbert's and Hardy-Hilbert's type integral inequalities with parameters, Math. Inequal. Appl., 2008, 11:701-716.
[7] Krni? M., Vukovi? P., On a multidimensional version of the Hilbert-type inequality, Analysis Mathematica, 2012, 38:291-303.
[8] Kuang J. C., Applied Inequalities (in Chinese), Shangdong Science and Tech Press, Ji'nan, 2004.
[9] Kuang J. C., Real and Functional Analysis (Continuation) (second volume), Higher Education Press, Beijing, 2015.
[10] Kuang J. C., Debnath L., On Hilbert's type inequalities on the weighted Orlicz spaces, Pacific J. Appl. Math., 2007, 1(1):95-103.
[11] Li Y. J., He B., On inequalities of Hilbert's type, Bulletin of the Australian Mathematical Society, 2007, 76(1):1-13.
[12] Liu T., Yang B. C., He L. P., On a multidimensional Hilbert-type integral inequality with logarithm function, Mathematical Inequalities and Applications, 2015, 18(4):1219-1234.
[13] Mitrinovi? D. S., Pe?ari? J. E., Fink A. M., Inequalities Involving Functions and their Integrals and Derivatives, Kluwer Academic Publishers, Boston, 1991.
[14] Pan Y. L., Wang H. T., Wang F. T., On Complex Functions, Science Press, Beijing, 2006.
[15] Rassias M. Th., Yang B. C., A multidimensional half-discrete Hilbert-type inequality and the Riemann zeta function, Applied Mathematics and Computation, 2013, 225:263-277.
[16] Rassias M. Th., Yang B. C., On a multidimensional half-discrete Hilbert-type inequality related to the hyperbolic cotangent function, Applied Mathematics and Computation, 2014, 242:800-813.
[17] Shi Y. P., Yang B. C., On a multidimensional Hilbert-type inequality with parameters, Journal of Inequalities and Applications, 2015, 2015:371.
[18] Yang B. C., A mixed Hilbert-type inequality with a best constant factor, International Journal of Pure and Applied Mathematics, 2005, 20(3):319-328.
[19] Yang B. C., A half-discrete Hilbert-type inequality, Journal of Guangdong University of Education, 2011, 31(3):1-7.
[20] Yang B. C., A half-discrete Hilbert-type inequality with a non-homogeneous kernel and two variables, Mediterr. J. Math., 2013, 10:677-692.
[21] Yang B. C., A multidimensional discrete Hilbert-type inequality, Int. J. Nonlinear Anal. Appl., 2014, 5(1):80-88.
[22] Yang B. C., Discrete Hilbert-type Inequalities, Bentham Science Publishers Ltd., The United Areb Emirates, 2011.
[23] Yang B. C., Hilbert-type Integral Inequalities, Bentham Science Publishers Ltd., The United Areb Emirates, 2009.
[24] Yang B. C., Hilbert-type integral operators:Norms and Inequalities (In Chapter 42 of "Nonlinear Analysis, Stability, Approximation, and Inequalities" (P. M. Paralos et al.)), Springer, New York, 2012, 7:71-859.
[25] Yang B. C., On Hilbert's Integral inequality, Journal of Mathematical Analysis and Applications, 1998, 220:778-785.
[26] Yang B. C., The Norm of Operator and Hilbert-type Inequalities (in Chinese), Science Press, Beijing, 2009.
[27] Yang B. C., Two Types of Multiple Half-discrete Hilbert-type Inequalities, Lambert Academic Publishing, Deutschland, 2012.
[28] Yang B. C., Brneti? I, Krni? M., Pe?ari? J. E., Generalization of Hilbert and Hardy-Hilbert integral inequalities, Math. Ineq. Appl, 2005, 8(2):259-272.
[29] Yang B. C., Chen Q., A half-discrete Hilbert-type inequality with a homogeneous kernel and an extension, Journal of Inequalities and Applications, 2011, 124, 16pp.
[30] Yang B. C., Chen Q., A multidimensional discrete Hilbert-type inequality, Journal of Mathematical Inequalities, 2014, 8(2):267-277.
[31] Yang B. C., Chen Q., On a Hardy-Hilbert-type inequality with parameters, Journal of Inequalities and Applications, 2015, 2015:339, 18pp.
[32] Yang B. C., Debnath L., Half-discrete Hilbert-type Inequalities, World Scientific Publishing Co. Ptcc. Ltd., Singapore, 2014.
[33] Yang B. C., Krni? M., On the norm of a mult-dimensional Hilbert-type operator, Sarajevo Journal of Mathematics, 2011, 7(20):223-243.
[34] Yang B. C., Rassias Th. M., On the way of weight coefficient and research for Hilbert-type inequalities, Math. Ineq. Appl., 2003, 6(4):625-658.
[35] Yang B. C., Rassias Th. M., On a Hilbert-type integral inequality in the subinterval and its operator expression, Banach J. Math. Anal., 2010, 4(2):100-110.
[36] Zhong W. Y., A mixed Hilbert-type inequality and its equivalent forms, Journal of Guangdong University of Education, 2011, 31(5):18-22.
[37] Zhong W. Y., A half discrete Hilbert-type inequality and its equivalent forms, Journal of Guangdong University of Education, 2012, 32(5):8-12.
[38] Zhong W. Y., The Hilbert-type integral inequality with a homogeneous kernel of Lambda-degree, Journal of Inequalities and Applications, 2008, No. 917392, 12pp.
[39] Zhong W. Y., Yang B. C., A best extension of Hilbert inequality involving several parameters, Journal of Jinan University (Natural Science), 2007, 28(1):20-23.
[40] Zhong W. Y., Yang B. C., A reverse Hilbert's type integral inequality with some parameters and the equivalent forms, Pure and Applied Mathematics, 2008, 24(2):401-407.
[41] Zhong J. H., Yang B. C., An extension of a multidimensional Hilbert-type inequality, Journal of Inequalities and Applications, 2017, 2017:78, 12pp.
[42] Zhong W. Y., Yang B. C., On multiple Hardy-Hilbert's integral inequality with kernel, Journal of Inequalities and Applications, Vol. 2007, Art. ID 27962, 17pp.
[43] Zhong J. H., Yang B. C., On an extension of a more accurate Hilbert-type inequality, Journal of Zhejiang University (Science Edition), 2008, 35(2):121-124.

基金

国家自然科学基金资助项目(61772140);广州市科技规划项目(201707010229)

PDF(522 KB)

Accesses

Citation

Detail

段落导航
相关文章

/