三维Keller-Segel-Navier-Stokes方程弱解的整体存在性

陆生琪, 陈淼超, 刘其林

数学学报 ›› 2020, Vol. 63 ›› Issue (5) : 495-504.

PDF(395 KB)
PDF(395 KB)
数学学报 ›› 2020, Vol. 63 ›› Issue (5) : 495-504. DOI: 10.12386/A2020sxxb0041
论文

三维Keller-Segel-Navier-Stokes方程弱解的整体存在性

    陆生琪1, 陈淼超2, 刘其林3
作者信息 +

Global Existence of Weak Solutions to a 3D Keller-Segel-Navier-Stokes System

    Sheng Qi LU1, Miao Chao CHEN2, Qi Lin LIU3
Author information +
文章历史 +

摘要

本文证明具有logistic源的一个3维Keller-Segel-Navier-Stokes方程弱解的整体存在性,并研究了弱解的长时间行为.

Abstract

In this paper, we prove the global existence of weak solutions to a 3D Keller–Segel–Navier–Stokes system with logistic source. We also study the long time behavior of the solutions.

关键词

趋化 / Navier-Stokes / 弱解 / 长时间行为

Key words

chemotaxis / Navier-Stokes / weak solutions / long time behavior

引用本文

导出引用
陆生琪, 陈淼超, 刘其林. 三维Keller-Segel-Navier-Stokes方程弱解的整体存在性. 数学学报, 2020, 63(5): 495-504 https://doi.org/10.12386/A2020sxxb0041
Sheng Qi LU, Miao Chao CHEN, Qi Lin LIU. Global Existence of Weak Solutions to a 3D Keller-Segel-Navier-Stokes System. Acta Mathematica Sinica, Chinese Series, 2020, 63(5): 495-504 https://doi.org/10.12386/A2020sxxb0041

参考文献

[1] Biler P., Global solutions to some parabolic-elliptic systems of chemotaxis, Adv. Math. Sci. Appl., 2009, 9:347-359.
[2] Corrias L., Perthame B., Zaag H., Global solutions of some chemotaxis and angiogenesis systems in high space dimensions, Milan J. Math., 2004, 72:1-28.
[3] Fan J., Zhao K., Improved extensibility criteria and global well-posedness of a coupled chemotaxis-fluid model on bounded domains, Discrete Contin. Dyn. Syst. B, 2018, 23(9):3949-3967.
[4] Horstmann D., From 1970 until present:the Keller-Segel model in chemotaxis and its consequences:I. Jahresber. Dtsch. Math.-Ver., 2003, 105:103-165.
[5] Hillen T., Painter K., A user's guide to PDE models for chemotaxis, J. Math. Biol., 2009, 58:183-217.
[6] Keller E., Segel L., Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 1970, 26:399-415.
[7] Keller E., Segel L., Model for chemotaxis, J. Theor. Biol., 1971, 30:225-234.
[8] Keller E., Segel L., Traveling bands of chemotactic bacteria:a theoretical analysis, J. Theor. Biol., 1971, 30:235-248.
[9] Kozono H., Miura M., Sugiyama Y., Existence and uniqueness theorem on mild solutions to the Keller-Segel system coupled with the Navier-Stokes fluid, J. Funct. Anal., 2016, 270:1663-1683.
[10] Sleeman B., Ward M., Wei J., Existence, stability, and dynamics of spike patterns in a chemotaxis model, SIAM J. Appl. Math., 2005, 65:790-817.
[11] Wrzosek D., Long time behaviour of solutions to a chemotaxis model with volume filling effect, Proc. R. Soc. Edinb., Sect. A, Math., 2006, 136:431-444.
[12] Winkler M., Global solutions in a fully parabolic chemotaxis system with singular sensitivity, Math. Methods Appl. Sci., 2011, 34:176-190.
[13] Winkler M., A three-dimensional Keller-Segel-Navier-Stokes system with logistic source:global weak solutions and asymptotic stablization. J. Funct. Anal., 2019, 276:1339-1401.

基金

安徽省重点大学自然科学基金(KJ2017A453,KJ2017A454);安徽省大学教学研究基金(2016jyxm0693);巢湖学院自然科学基金(XLY-201503)

PDF(395 KB)

Accesses

Citation

Detail

段落导航
相关文章

/