粘性依赖于温度的MHD方程组整体经典解的正则性

尚朝阳, 任凯芳, 唐福全

数学学报 ›› 2021, Vol. 64 ›› Issue (1) : 1-40.

PDF(791 KB)
PDF(791 KB)
数学学报 ›› 2021, Vol. 64 ›› Issue (1) : 1-40. DOI: 10.12386/A2021sxxb0001
论文

粘性依赖于温度的MHD方程组整体经典解的正则性

    尚朝阳1,2, 任凯芳2, 唐福全2
作者信息 +

Global Regularity of Classical Solutions to the Planar MHD Equations with Temperature-dependent Viscosity

    Zhao Yang SHANG1,2, Kai Fang REN2, Fu Quan TANG2
Author information +
文章历史 +

摘要

本文主要研究可压缩非等熵平面磁流体动力学方程组的Cauchy问题整体经典解的正则性,其中方程组的粘性系数λ,μ,磁扩散系数η和热传导系数κ都是比容v和温度θ的函数,正比于hvθαh是满足一定条件的非退化光滑函数.在正则性准则∫0 +∞||b||L2ds <+∞的条件下,当α适当小时,我们证明了大初值整体经典解的存在性.

Abstract

We study the global regularity of classical solutions to the Cauchy problem of planar magnetohydrodynamics equations when the viscosity coefficients λ, μ, magnetic diffusion coefficient η and the heat conductivity coefficient κ depend on the specific volume v and the temperature θ which are proportional to h(v)θα for certain non-degenerate smooth function h. Under the condition of regularity criterion ∫0 +∞||b||L2ds < +∞, when α is small, we prove the existence of global classical solution with large initial data.

关键词

MHD方程组 / 粘性依赖于温度 / 正则性准则 / 整体经典解

Key words

MHD equations / temperature-dependent viscosity / regularity criterion / global classical solutions

引用本文

导出引用
尚朝阳, 任凯芳, 唐福全. 粘性依赖于温度的MHD方程组整体经典解的正则性. 数学学报, 2021, 64(1): 1-40 https://doi.org/10.12386/A2021sxxb0001
Zhao Yang SHANG, Kai Fang REN, Fu Quan TANG. Global Regularity of Classical Solutions to the Planar MHD Equations with Temperature-dependent Viscosity. Acta Mathematica Sinica, Chinese Series, 2021, 64(1): 1-40 https://doi.org/10.12386/A2021sxxb0001

参考文献

[1] Antontsev S. N., Kazhikhov A. V., Monakhov V. N., Boundary Value Problems in Mechanics of Nonhomogeneous Fluids, Studies in Mathematics and its Applications, North-Holland Publishing Co., Amsterdam, 1990.
[2] Chen G. Q., Wang D., Global solutions of nonlinear magnetohydrodynamics with large initial data, J. Differential Equations, 2002, 182:344-376.
[3] Ding S., Wen H., Zhu C., Global classical large solutions to 1D compressible Navier-Stokes equations with density-dependent viscosity and vacuum, J. Differential Equations, 2011, 251:1696-1725.
[4] Fan J., Huang S., Li F., Global strong solutions to the planar compressible magnetohydrodynamic equations with large initial data and vacuum, Kinet. Relat. Models, 2017, 10:1035-1053.
[5] Fan J., Jiang S., Nakamura G., Vanishing shear viscosity limit in the magnetohydrodynamic equations, Comm. Math. Phys., 2007, 270:691-708.
[6] Fan J., Jiang S., Nakamura G., Stability of weak solutions to equations of magnetohydrodynamics with Lebesgue initial data, J. Differential Equations, 2011, 251:2025-2036.
[7] Guo Z., Zhu C., Global weak solutions and asymptotic behavior to 1D compressible Navier-Stokes equations with density-dependent viscosity and vacuum, J. Differential Equations, 2010, 248:2768-2799.
[8] Hu Y., Ju Q., Global large solutions of magnetohydrodynamics with temperature-dependent heat conductivity, Z. Angew. Math. Phys., 2015, 66:865-889.
[9] Itaya N., A survey on two model equations for compressible viscous fluid, J. Math. Kyoto Univ., 1979, 19:293-300.
[10] Jenssen H. K., Karper T. K., One-dimensional compressible flow with temperature dependent transport coefficients, SIAM J. Math. Anal., 2010, 42:904-930.
[11] Jiang S., Zlotnik A., Global well-posedness of the Cauchy problem for the equations of a one-dimensional viscous heat-conducting gas with Lebesgue initial data, Proc. Roy. Soc. Edinburgh Sect. A, 2004, 134:939-960.
[12] Jiang S., Xin Z., Zhang P., Global weak solutions to 1D compressible isentropic Navier-Stokes equations with density-dependent viscosity, Methods Appl. Anal., 2005, 12:239-251.
[13] Jiang S., Xin Z., Zhang P., Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Academic Press, 1967, 864-880.
[14] Jiu Q., Xin Z., The Cauchy problem for 1D compressible flows with density-dependent viscosity coefficients, Kinet. Relat. Models, 2008, 1:313-330.
[15] Kanel J. I., A model system of equations for the one-dimensional motion of a gas, Differencial'nye Uravnenija, 1968, 4:721-734.
[16] Kawohl B., Global existence of large solutions to initial-boundary value problems for a viscous, heatconducting, one-dimensional real gas, J. Differential Equations, 1985, 58:76-103.
[17] Kawashima S., Nishida T., Global solutions to the initial value problem for the equations of one-dimensional motion of viscous polytropic gases, J. Math. Kyoto Univ., 1981, 21:825-837.
[18] Kawashima S., Okada M., Smooth global solutions for the one-dimensional equations in magnetohydrodynamics, Proc. Japan Acad. Ser. A Math. Sci., 1982, 58:384-387.
[19] Kazhikhov A. V., On the Cauchy problem for the equations of a viscous gas, Sibirsk. Mat. Zh., 1982, 23:60-64.
[20] Kazhikhov A. V., Shelukhin V. V., Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas, Prikl. Mat. Meh., 1977, 41:282-291.
[21] Li H. L., Li J., Xin Z., Vanishing of vacuum states and blow-up phenomena of the compressible Navier-Stokes equations, Comm. Math. Phys., 2008, 281:401-444.
[22] Landau L. D., Lifshits E. M., The Electrodynamics of Continuous Media (2nd Revised and Enlarged Edition), Moscow, 1982.
[23] Luo T., On the outer pressure problem of a viscous heat-conductive one-dimensional real gas, Acta Math. Appl. Sinica, English Ser., 1997, 13:251-264.
[24] Li T., Qin T., Physics and Partial Differential Equation, Higher Education Press, Beijing, 2013.
[25] Li Y., Pan R., Zhu S., Recent progress on classical solutions for compressible isentropic Navier-Stokes equations with degenerate viscosities and vacuum, Bull. Braz. Math. Soc., 2016, 47:507-519.
[26] Li Y., Pan R., Zhu S., On classical solutions to 2D shallow water equations with degenerate viscosities, J. Math. Fluid Mech., 2017, 19:151-190.
[27] Li Y., Shang Z., Global large solutions to one-dimensional magnetohydrodynamics equations with temperature-dependent viscosity, J. Hyperbolic Diff. Equ., 2019, 16:443-493.
[28] Liang Z., Shuai J., Global strong solution for the full MHD equations with vacuum and large data, Nonlinear Anal. Real World Appl., 2018, 44:385-400.
[29] Liu H., Yang T., Zhao H., et al., One-dimensional compressible Navier-Stokes equations with temperature dependent transport coefficients and large data, SIAM J. Math. Anal., 2014, 46:2185-2228.
[30] Liu T. P., Xin Z., Yang T., Vacuum states for compressible flow, Discrete Contin. Dynam. Systems, 1998, 4:1-32.
[31] Matsumura A., Nishida T., The initial value problem for the equations of motion of viscous and heatconductive gases, J. Math. Kyoto Univ., 1980, 20:67-104.
[32] Mellet A., Vasseur A., Existence and uniqueness of global strong solutions for one-dimensional compressible Navier-Stokes equations, SIAM J. Math. Anal., 2007, 39:1344-1365.
[33] Nash J., Le problème de Cauchy pour leś equations différentielles d'un fluide général, Bull. Soc. Math. France, 1962, 90:487-497.
[34] Nishihara K., Yang T., Zhao H., Nonlinear stability of strong rarefaction waves for compressible Navier-Stokes equations, SIAM J. Math. Anal., 2004, 35:1561-1597.
[35] Okada M., Kawashima S., On the equations of one-dimensional motion of compressible viscous fluids, J. Math. Kyoto Univ., 1983, 23:55-71.
[36] Pan R., Zhang W., Compressible Navier-Stokes equations with temperature dependent heat conductivity, Commun. Math. Sci., 2015, 13:401-425.
[37] Polovin R. V., Demutskii V. P., Fundamentals of Magnetohydrodynamics, Consultants Bureau, New York, 1990.
[38] Qin X., Yang T., Yao Z. A., et al., A study on the boundary layer for the planar magnetohydrodynamics system, Acta Math. Sci. Ser. B, Engl. Ed., 2015, 35:787-806.
[39] Smagulov S. S., Durmagambetov A. A., Iskenderova D. A., Cauchy problems for equations of magnetogasdynamics, Differentsial'nye Uravneniya, 1993, 29:337-348.
[40] Tan Z., Yang T., Zhao H., et al., Global solutions to the one-dimensional compressible Navier-Stokes-Poisson equations with large data, SIAM J. Math. Anal., 2013, 45:547-571.
[41] Vasseur A. F., Yu C., Existence of global weak solutions for 3D degenerate compressible Navier-Stokes equations, Invent. Math., 2016, 206:935-974.
[42] Vol'pert A. I., Hudjaev S. I., The Cauchy problem for composite systems of nonlinear differential equations, Mat. Sb. (N.S.), 1972, 87:504-528.
[43] Vong S. W., Yang T., Zhu C., Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum, II, J. Differential Equations, 2003, 192:475-501.
[44] Wang T., One dimensional p-th power Newtonian fluid with temperature-dependent thermal conductivity, Commun. Pure Appl. Anal., 2016, 15:477-494.
[45] Wang T., Zhao H., One-dimensional compressible heat-conducting gas with temperature-dependent viscosity, Math. Models Methods Appl. Sci., 2016, 26:2237-2275.
[46] Yang T., Zhu C., Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum, Comm. Math. Phys., 2002, 230:329-363.
[47] Zel'dovich Y. B., Raizer Y. P., Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Vol. II, Academic Press, New York, 1967.
[48] Zhang P., Zhao J., The existence of local solutions for the compressible Navier-Stokes equations with the density-dependent viscosities, Commun. Math. Sci., 2014, 12:1277-1302.
[49] Zhu S., Existence results for viscous polytropic fluids with degenerate viscosity coefficients and vacuum, J. Differential Equations, 2015, 259:84-119.

基金

国家自然科学基金资助项目(11571232,11831011)
PDF(791 KB)

127

Accesses

0

Citation

Detail

段落导航
相关文章

/