有界域上具有部分耗散和磁扩散的二维磁流体方程的全局适定性
Global Well-posedness for the 2D MHD System with Partial Dissipation and Magnetic Diffusion in a Bounded Domain
探究了具有部分耗散和磁扩散的二维不可压缩磁流体(MHD)方程的初边值问题.在有界区域上,当系统的各个方向上的耗散系数和磁扩散系数都非负时,我们得到了该模型的强解是整体存在且唯一的.此外,对周期域而言,其解仍是全局适定的.
We consider the initial boundary value problem of the two-dimensional incompressible magnetohydrodynamic (MHD) equations with partial dissipation and magnetic diffusion. The global and unique strong solution of the model in a bounded domain is justified when the dissipation and magnetic diffusion coefficient in all directions are nonnegative. In addition, the global well-posedness of the system can be extended into the periodic boundary.
不可压缩磁流体 / 初边值问题 / 部分耗散 / 磁扩散 / 全局适定性 {{custom_keyword}} /
incompressible MHD / initial-boundary value problem / partial dissipation / magnetic diffusion / global well-posedness {{custom_keyword}} /
[1] Abidi H., Paicu M., Global existence for the magnetohydrodynamic system in critical spaces, Proc. Roy. Soc. Edinburgh Sect A., 2008, 148:447-476.
[2] Bardos C., Sulem C., Sulem P. L., Longtime dynamics of a conductive fluid in the presence of a strong magnetic field, Trans. Amer. Math. Soc., 1988, 305:175-191.
[3] Cao C. S., Wu J. H., Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion, Adv. Math., 2011, 226(2):1803-1822.
[4] Chandrasekhar S., Hydrodynamic and Hydromagnetic Stability, Clarendon, Oxford, 1961.
[5] Chen Q., Tan Z., Wang Y., Strong solutions to the incompressible magnetohydrodynamic equations, Math. Methods Appl. Sci., 2011, 34:94-107.
[6] Desjardins B., Le Bris C., Remarks on a nonhomogeneous model of magnetohydrodynamics, Differential Integral Equations, 1998, 11:377-394.
[7] Duvaut G., Lions J. L., Inéquations en thermoélasticité et magnétohydrodynamique, Arch. Ration. Mech. Anal., 1972, 46:241-279.
[8] Du L. L., Zhou D. Q., Global well-posedness of two-dimensional magnetohydrodynamic flows with partial dissipation and magnetic diffusion, SIAM J. Math. Anal., 2015, 47(2):1562-1589.
[9] Gerbeau J. F., Le Bris C., Existence of solution for a density-dependent magnetohydrodynamic equation, Adv. Differential Equations, 1997, 2:427-452.
[10] Huang X., Wang Y., Global strong solution to the 2D nonhomogeneous incompressible MHD system, J. Differential Equations, 2013, 254:511-527.
[11] Ladyzhenskaya O. A., The Mathematical Theory of Viscous Incompressible Flow, Silverman Gordon and Breach Science Publishers, New York, 1963.
[12] Lei Z., On axially symmetric incompressible magnetohydrodynamics in three dimensions, J. Differential Equations, 2015, 259:3202-3215.
[13] Li X. L., Wang D. H., Global strong solution to the three-dimensional density-dependent incompressible magnetohydrodynamic flows, J. Differential Equations, 2011, 251:1580-1615.
[14] Lin F. H., Xu L., Zhang P., Global small solutions to 2-D incompressible MHD system, J. Differential Equations, 2015, 259:5440-5485.
[15] Ren X. X., Wu J. H., Xiang Z. Y., et al., Global existence and decay of smooth solution for the 2-D MHD equations without magnetic diffusion, J. Funct. Anal., 2014, 267(2):503-541.
[16] Sermange M., Temam R., Some mathematical questions related to the MHD equations, Commun. Pure Appl. Math., 1983, 36:635-64.
[17] Temam R., Navier-Stokes Equations, Theory and Numerical Analysis, AMS, Providence, R. I., 2001.
[18] Xu L., Zhang P., Global small solutions to three-dimensional incompressible magnetohydrodynamical system, SIAM J. Math. Anal., 2015, 47:26-65.
[19] Yu H. B., Global regularity to the 2D incompressible MHD with mixed partial dissipation and magnetic diffusion in a bounded domain, Acta Math. Sci. Ser. B, Engl. Ed., 2017, 37(2):395-404.
/
〈 | 〉 |