
高斯域上理想计数函数在短区间上的Erdös-Kac型定理
Erdös–Kac Type Theorem for Ideal Counting Function over Gaussian Field in Short Intervals
设aK(n)为Z[i]中范数为n的非零整理想个数, l ∈ Z+,本文给出了短区间上权为aK(n)l的Erdös-Kac型定理,并得到短区间上aK(n)l均值估计的渐近公式.
Let aK(n) be the number of non-zero integral ideals in Z[i] with norm n, l ∈ Z+. In this paper, we establish an Erdös-Kac type theorem with weight aK(n)l in short intervals, and we get an asymptotic formula for the average behavior of aK(n)l in short intervals.
理想计数函数 / Erdö / s-Kac定理 / 高斯域 / 短区间 / 均值估计 {{custom_keyword}} /
ideal counting function / Erdös-Kac theorem / Gaussian field / short intervals / mean value estimate {{custom_keyword}} /
[1] Chandrasekharan K., Narasimhan R., The approximate functional equation for a class of zeta-functions, Math. Ann., 1963, 152(1):30-64.
[2] Erdös P., Kac M., On the Gaussian law of errors in the theory of additive functions, P.N.A.S., 1939, 25(4):206-207.
[3] Huxley M. N., On the difference between consecutive primes, Invent. Math., 1971, 15(2):164-170.
[4] Landau E., Einführung in die Elementare umd Analytische Theorie der Algebraischen Zahlen und der Ideals, Chelsea Publishing Company, New York, 1949.
[5] Lü G. S., Wang Y. H., Note on the number of integral ideals in Galois extensions, Science China Mathematics, 2010, 53(9):2417-2424.
[6] Lü G. S., Yang Z. S., The average behavior of the coefficients of the Dedekind zeta function over square numbers, J. Number Theory, 2011, 131(10):1924-1938.
[7] Nowak W. G., On the distribution of integer ideals in algebraic number fields, Math. Nachr., 1993, 161(1):59-74.
[8] Tenenbaum G., Introduction to Analytic and Probabilistic Number Theory, Cambridge University Press, Cambridge, 1995.
[9] Wu J., Wu Q., Mean values for a class of arithmetic functions in short intervals, Math. Nachr., 2020, 293:178-202.
[10] Zhai W. G., Asymptotics for a class of arithmetic functions, Acta Arith., 2015, 170(2):135-160.
/
〈 |
|
〉 |