六维近凯勒流形的Kodaira维数

陈豪杰, 王冠明

数学学报 ›› 2021, Vol. 64 ›› Issue (1) : 87-98.

PDF(520 KB)
PDF(520 KB)
数学学报 ›› 2021, Vol. 64 ›› Issue (1) : 87-98. DOI: 10.12386/A2021sxxb0007
论文

六维近凯勒流形的Kodaira维数

    陈豪杰, 王冠明
作者信息 +

Kodaira Dimension of Nearly Kähler 6-manifolds

    Hao Jie CHEN, Guan Ming WANG
Author information +
文章历史 +

摘要

本文主要研究了六维近凯勒流形的典范丛和Kodaira维数.证明了六维严格近凯勒流形的典范丛是拟全纯平凡的,从而其Kodaira维数为0.特别地,证明了三维复射影空间CP3具有Kodaira维数不为-∞的近复结构.对于齐性的六维严格近凯勒流形,具体构造了它们典范丛的整体生成元.证明了齐性近凯勒流形F3和CP3的Hodge数h1,0h2,0h2,3h1,3均为零.

Abstract

We investigate the canonical bundle and Kodaira dimension of nearly Kähler 6-manifolds. We prove that the canonical bundle of a strictly nearly Kähler 6-manifold is pseudoholomorphically trivial. Therefore, the Kodaira dimension is zero. As a corollary, we show the existence of non-integrable almost complex structure on CP3 whose Kodaira dimension is not -∞. We also construct explicit generating sections of the canonical bundle of homogeneous strictly nearly Kähler 6-manifolds and prove that the Hodge numbers h1,0, h2,0, h2,3, h1,3 of the homogeneous strictly nearly Kähler F3 and CP3 are all zeros.

关键词

近凯勒流形 / 典范丛 / Kodaira维数 / 近复流形

Key words

Nearly Kähler manifolds / canonical bundle / Kodaira dimension / almost complex manifolds

引用本文

导出引用
陈豪杰, 王冠明. 六维近凯勒流形的Kodaira维数. 数学学报, 2021, 64(1): 87-98 https://doi.org/10.12386/A2021sxxb0007
Hao Jie CHEN, Guan Ming WANG. Kodaira Dimension of Nearly Kähler 6-manifolds. Acta Mathematica Sinica, Chinese Series, 2021, 64(1): 87-98 https://doi.org/10.12386/A2021sxxb0007

参考文献

[1] Agricola I., Bazzoni G., Goertsches O., et al., On the history of the Hopf problem, Diff. Geom. Appl., 2018, 57:1-9.
[2] Barth W., Hulek K., Peters C., et al., Compact Complex Surfaces, 2nd edn, Springer, Berlin, Heidelberg, 2004.
[3] Butruille J. B., Classification des variétés approximativement kähleriennes homogènes, Ann. Global Anal. Geom., 2005, 27(3):201-225.
[4] Butruille J. B., Homogeneous Nearly Kähler Manifolds, Handbook of Pseudo-Riemannian Geometry and Supersymmetry, 2010, 399-423.
[5] Carrión R., Some Special Geometries Defined by Lie groups, Ph.D. Thesis, Oxford, 1993.
[6] Chen H., Zhang W., Kodaira dimensions of almost complex manifolds l, arXiv:1808.00885.
[7] Chen H., Zhang W., Kodaira dimensions of almost complex manifolds ll, arXiv:2004.12825.
[8] Dorfmeister J. G., Zhang W., The Kodaira dimension of Lefschetz fibrations, Asian J. Math., 2009, 13(3):341-357.
[9] Ehresmann C., Libermann P., Sur les structures presque hermitiennes isotropes, C. R. Acad. Sci. Paris, 1951, 232:1281-1283.
[10] Friedrich T., Grunewald R., On the first eigenvalue of the Dirac operator on 6-dimensional manifolds, Ann. Global Anal. Geom., 1985, 3:265-273.
[11] Foscolo L., Haskins M., New G2-holonomy cones and exotic nearly Kähler structures on S6 and S3×S3, Ann. of Math., 2017, 185(1):59-130.
[12] Gauduchon P., Hermitian connections and Dirac operator, Boll. Un. Mat. Ital. B, 1997, 11(2):257-288.
[13] Gray A., Minimal varieties and almost Hermitian submanifolds, Michigan Math. J., 1965, 12:273-287.
[14] Gray A., Nearly Kähler manifolds, J. Differential Geometry, 1970, 4:283-309.
[15] Gray A., The structure of nearly Kähler manifolds, Math. Ann., 1976, 223(3):233-248.
[16] Gray A., Hervella L. M., The sixteen classes of almost hermitian manifolds and their linear invariants, Annali di Matematica Pura ed Applicata, 1980, 123(1):35-58.
[17] Hitchin N., Stable Forms and Special Metrics, In:Global Differential Geometry:The Mathematical Legacy of A. Gray, Contemp. Math., 288, 70-89, Amer. Math. Soc., Providence, 2001.
[18] Kobayashi S., Nomizu K., Foundations of Differential Geometry, Vol. II, Interscience Publishers John WileySons, Inc., New York, London, Sydney, 1969.
[19] Kollár J., Mori S., Birational Geometry of Algebraic Varieties, Cambridge Tracts in Mathematics, Vol. 134, Cambridge University Press, Cambridge, 1998.
[20] Li T. J., Symplectic 4-manifolds with Kodaira dimension zero, J. Differential Geom., 2006, 74(2):321-352.
[21] Li T. J., Kodaira Dimension in Low Dimensional Topology, arXiv:1511.04831. MR3971557
[22] Morris D., Nearly Kähler Geometry in Six Dimensions, Ph.D. Thesis, Imperial College London, 2014.
[23] Nagy P. A., Nearly Kähler geometry and Riemannian foliations, Asian J. Math., 2002, 6(3):481-504.
[24] Wolf J. A., Gray A., Homogeneous spaces defined by Lie group automorphisms I, II, J. Diff. Geom., 1968, 2:77-114, 115-159.
[25] Zhang W., Geometric structures, Gromov norm and Kodaira dimensions, Adv. Math., 2017, 308:1-35.
[26] Zheng F., Complex Differential Geometry, AMS/IP Studies in Advanced Mathematics, 18. American Mathematical Society, Providence, RI, International Press, Boston, MA, 2000.

基金

国家自然科学基金资助项目(11901530);浙江省自然科学基金资助项目(LY19A010017)
PDF(520 KB)

Accesses

Citation

Detail

段落导航
相关文章

/