
非等熵气体动力学方程组大初值问题的放缩框架
A Scaling Framework for the Non-isentropic Gas Dynamics System with Large Initial Data
非等熵气体动力学系统Cauchy问题弱解全局存在性有两个公开问题:一个是包含真空的小初值问题,另一个是任意大初值问题.本文通过引入一个放缩框架证明了上述两个问题的等价性,即对于粘性消失解,其包含真空小初值问题的一致BV估计蕴含着任意大初值问题弱解的全局存在性.该放缩框架对大多数具有物理背景的双曲守恒律系统亦成立.
There are two open problems on the global existence results of non-isentropic gas dynamics. One is whether the weak solutions exist globally with small initial data containing vacuum, the other is whether the global existence results hold with arbitrary large initial data. By introducing a scaling framework, we give the equivalence of the two problems above. For vanishing viscosity solutions, the positive answer to the first question naturally implies the positive answer to the second one. And this scaling framework can be applied to most systems of conservation laws with physical background.
双曲守恒律 / 非等熵气体动力学 / 粘性消失解 / 放缩框架 {{custom_keyword}} /
hyperbolic conservation laws / non-isentropic gas dynamics / vanishing viscosity method / scaling framework {{custom_keyword}} /
[1] Bianchini S., Bressan A., Vanishing viscosity solutions of nonlinear hyperbolic systems, Annals of Mathematics, 2005, 161(1):223-342.
[2] Chen G. Q., Convergence of the Lax-Friedrichs scheme for isentropic gas dynamics, Acta Math. Sci., 1986, 6:75-120.
[3] Chueh K. N., Conley C. C., Smoller J. A., Positive invariant regions for systems of nonlinear diffusion equations, Indiana Univ. Math. J., 1977, 26:372-411.
[4] Ding X. X., Chen G. Q., Luo P. Z., Convergence of the Lax-Friedrichs schemes for the isentropic gas dynamics I-II, Acta Math. Sci., 1985, 5:415-432; 433-472.
[5] Ding X. X., Chen G. Q., Luo P. Z., Convergence of the fractional step Lax-Friedrichs scheme and Godunov scheme for the isentropic system of gas dynamics, Comm. Math. Phys., 1989, 121:63-84.
[6] Diperna R. J., Convergence of the viscosity method for isentropic gas dynamics, Comm. Math. Phys., 1983, 91:1-30.
[7] Huang F., Wang Z., Convergence of viscosity solutions for isothermal gas dynamics, SIAM J. Math. Anal., 2002, 34:595-610.
[8] Jessen H. K., Blowup for systems of conservation laws, SIAM J. Math. Anal., 2000, 31(4):894-908.
[9] Lions P. L., Perthame B., Souganidis P. E., Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates, Comm. Pure Appl. Math., 1996, 49:599-638.
[10] Lions P. L., Perthame B., Tadmor E., Kinetic formulation of the isentropic gas dynamics and p-systems, Comm. Math. Phys., 1994, 163:415-431.
[11] Liu T. P., The Riemann problem for general systems of conservation laws, J. Diff. Eqs., 1975, 18(1):218-234.
[12] Lu Y. G., Hyperbolic conservation laws and the compensated compactness method, Chapman Hall/CRC Press, 2003.
[13] Lu Y. G., Existence of global bounded weak solutions to nonsymmetric systems of Keyfitz-Kranzer type, J. Funct. Anal., 2011, 26(10):2797-2815.
[14] Nishida T., Global solution for an initial boundary value problem of a quasilinear hyperbolic system, Proc. Japan. Acad., 1968, 44(7):642-646.
[15] Nishida T., Smoller J. A., Solutions in the large for some nonlinear hyperbolic conservation laws, Comm. Pure Appl. Math., 1973, 26(2):183-200.
国家自然科学基金资助项目(11872201);江苏省高校自然科学基金资助项目(19KJB110013)
/
〈 |
|
〉 |