双截断Baskakov局部化算子的收敛性
Convergence of Bi-shift Localized Baskakov Operators
本文考虑Baskakov算子的一种新的局部化算子,获得了该算子的一些收敛性质.另外,利用概率论中心极限定理,建立了Baskakov算子核的新估计
We consider a new form of the localized Baskakov operators, and obtain some convergence properties of the new operators. We also obtain a new estimate for the kernel of the Baskakov operators by making use of one of the central limit theorems in probability theory.
局部化 / Baskakov算子 / 收敛性 {{custom_keyword}} /
localization / Baskakov operator / convergence {{custom_keyword}} /
[1] Ditzian Z., Totik V., Moduli of Smoothness, Springer-Verlag, Berlin, New York, 1987.
[2] Grof J.,Über approximation durch polynome mit Belegfunktionen, Äcta Math. Acad. Sci. Hungar, 1980, 35:109-116.
[3] Gupta V., Tachev G., Approximation with Positive Linear Operators and Linear Combinations, Developments in Math., Vol. 50, Springer, Cham, 2017.
[4] Lehnhoff H. G., On a modified Szász-Mirakjan operator, J. Approx. Theory, 1984, 42:278-282.
[5] Omey E., Note on operators of Szász-Mirakjan type, J. Approx. Theory, 1986, 47:246-254.
[6] Petrov V. V., Limit Theorem of Sums of Independent Random Variables (in Russian), Moskow Nauka, Moskow, 1987.
[7] Sun X. H., On the convergence of the modified Szász-Mirakjan operator, Approx. Theory and Its Appl., 1994, 10:20-25.
[8] Wang J. L., Zhou S. P., On the convergence of modified Baskakov operators, Bull. Insti. Math. Acad. Sinica, 2000, 28:117-123.
[9] Xie L. S., Xie T. F., Convergence of bi-shift localized Szász-Mirakjan operators, Results in Math., 2019, 74(4):Art. 198, 9pp.
[10] Zhou G. Z., Zhou S. P., A remark on a modified Szász-Mirakjan operator, Colloq. Math., 1999, 79:157-160.
国家自然科学基金资助项目(11771194)
/
〈 | 〉 |