圆环的加正规权Bergman空间上正符号Toeplitz算子

何忠华, 夏锦, 王晓峰

数学学报 ›› 2021, Vol. 64 ›› Issue (3) : 353-374.

PDF(442 KB)
PDF(442 KB)
数学学报 ›› 2021, Vol. 64 ›› Issue (3) : 353-374. DOI: 10.12386/A2021sxxb0031
论文

圆环的加正规权Bergman空间上正符号Toeplitz算子

    何忠华1, 夏锦2, 王晓峰2
作者信息 +

Positive Toeplitz Operators on Bergman Space of Annular Induced by Regular-weight

    Zhong Hua HE1, Jin XIA2, Xiao Feng WANG2
Author information +
文章历史 +

摘要

本文讨论了圆环M上正规权Bergman空间Aω1,2p(1 < p < ∞)的对偶及其上正符号Toeplitz算子,刻画了这类Bergman空间的对偶空间,并得到了这些正规权Bergman空间之间正符号Toeplitz算子有界与紧的充要条件.

Abstract

This paper is devoted to studing Bergman spaces induced by regular-weight Aω1,2p(M) (1 < p < ∞) on annular and positive Toeplitz operators on these spaces. The dual spaces of Bergman spaces induced by regular-weight are characterized. We also obtain equivalent conditions for boundedness and compactness of positive Toeplitz operators between these regular-weighted Bergman spaces.

关键词

圆环 / 正规权 / Bergman空间 / Toeplitz算子

Key words

annular / regular-weight / Bergman spaces / Toeplitz operators

引用本文

导出引用
何忠华, 夏锦, 王晓峰. 圆环的加正规权Bergman空间上正符号Toeplitz算子. 数学学报, 2021, 64(3): 353-374 https://doi.org/10.12386/A2021sxxb0031
Zhong Hua HE, Jin XIA, Xiao Feng WANG. Positive Toeplitz Operators on Bergman Space of Annular Induced by Regular-weight. Acta Mathematica Sinica, Chinese Series, 2021, 64(3): 353-374 https://doi.org/10.12386/A2021sxxb0031

参考文献

[1] Aleman A., Siskakis A., Integration operators on Bergman spaces, Indiana Univ. Math. J., 1997, 46(2):337-356.
[2] Cao G., Toeplitz operators on connected domains, Sci. China Ser. A, 2006, 49(6):827-837.
[3] Coburn L. A., Singular integral operators and Toeplitz operators on odd spheres, Indiana Univ. Math. J., 1973/74, 23:433-439.
[4] ?u?kovi? Z., Fan D., Commutants of Toeplitz operators on the ball and annulus, Glasgow Math. J., 1995, 37(3):303-309.
[5] Douglas R. G., Banach Algebra Techniques in Operator Theory, Academic Press, New York, London, 1972.
[6] Jovovic M., Zheng D., Compact operators and Toeplitz algebras on multiply-connected domains, J. Funct. Anal., 2011, 261(1):25-50.
[7] Luecking D. H., Trace ideal criteria for Toeplitz operators, J. Funct. Anal., 1987, 73(2):345-368.
[8] Peláz J. A., Small weighted Bergman spaces, In:Proceedings of the Summer School in Complex and Harmonic Analysis, and Related Topics, 2016:29-98.
[9] Peláz J. A., Rätyä J., Two weight inequality for Bergman projection, J. Math. Pures Appl., 2016, 105(9):102-130.
[10] Peláz J. A., Rätyä J., Trace class criteria for Toeplitz and composition operators on small Bergman spaces, Adv. Math., 2016, 293:606-643.
[11] Peláz J. A., Rättyä, J., Sierra K., Berezin transform and Toeplitz operators on Bergman spaces induced by regular weights, J. Geom. Anal., 2018, 28(1):656-687.
[12] Zhu K., Operator Theory in the Function Spaces, 2nd edn., Mathematical Surveys and Monographs, Vol.138, American Mathematical Society, Providence, RI, 2007.

基金

国家自然科学基金资助项目(11471084,11501130,11971125,11971123);广东高校重点平台和科研资助项目(2018KTSCX154)

PDF(442 KB)

Accesses

Citation

Detail

段落导航
相关文章

/