Banach空间中正则非退化异宿环的Lipschitz扰动
The Lipschitz Perturbations of Regular Nondegenrate Heteroclinic Cycles in Banach Spaces
本文研究Banach空间上离散动力系统的Lipschitz扰动.设f,g是Banach空间(X,||·||)上的连续自映射.如果f具有正则非退化返回排斥子或正则非退化异宿环且g是f的Lipschitz小扰动,则g也有正则非退化返回排斥子或正则非退化异宿环.另外,本文还证明完备度量空间中正则非退化异宿环蕴含正则非退化返回排斥子.
This note is concerned with the effect of small Lipschitz perturbations of a discrete dynamical system in Banach spaces. Let f, g be continuous map from a Banach space X into itself. If f has regular nondegenrate snap-back repellers or heteroclinic cycles and g is a small Lipschitz perturbations of f, then g has regular nondegenrate snap-back repellers or heteroclinic cycles. In addition, the regular nondegenrate heteroclinic cycles implying the snap-back repellers is studied in complete metric spaces.
离散动力系统 / Lipschitz扰动 / 混沌 / 异宿环 / 结构稳定性 {{custom_keyword}} /
discrete dynamical system / Lipschitz perturbations / chaos / heteroclinic cycles / structural stability {{custom_keyword}} /
[1] Banks J., Brooks J., Cairns G., et al., On Devaney's definition of chaos, Amer. Math. Mon., 1992, 99:332-334.
[2] Chen Y., Huang T., Huang Y., Complex dynamics of a delayed discrete neural network of two nonidentical neurons, Chaos, 2014, 24:013108.
[3] Chen Y., Huang Y., Li L., The persistence of snap-back repeller under small C1 perturbations in Banach spaces, Internat. J. Bifur. Chaos, 2011, 21(3):703-710.
[4] Chen Y., Huang Y., Zou X., Chaotic invariant sets of a delayed discrete neural network of two non-identical neurons, Sci. China Math., 2013, 56(9):1869-1878.
[5] Chen Y., Li L., Wu X., et al., The structural stability of maps with heteroclinic repellers, Internat. J. Bifur. Chaos, 2020, 30:accepted.
[6] Chen H., Li M., Stability of symbolic embeddings for difference equations and their multidimensional perturbations, J. Differential Equations, 2015, 258:906-918.
[7] Chen Y., Wu X., The C1 persistence of heteroclinic repellers in Rn, J. Math. Anal. Appl., 2020, 485(2):1-9.
[8] Devaney R., An Introduction to Chaotic Dynamical Systems (Second Edition), Addison-Wesley Publishing Company, Redwood City, 1989.
[9] Huang W., Ye X., Devaney's chaos or 2-scattering implies Li-Yorke's chaos, Topol. Appl., 2002, 117:259-272.
[10] Li J., Ye X., Recent development of chaos theory in topological dynamics, Acta Math. Sin. Engl. Ser., 2016, 32(1):83-114.
[11] Li S., ω-Chaos and topological entropy, T. Amer. Math. Soc., 1993, 339(1):243-249.
[12] Li T., Yorke J., Period three implies chaos, Amer. Math. Mon., 1975, 82:985-992.
[13] Li Z., Shi Y., Zhang C., Chaos induced by heteroclinic cycles connecting repellers in complete metric spaces, Chaos Solitons Fractals, 2008, 36:746-761.
[14] Li M., Lyu M., A simple proof for presistence of snap-back repellers, J. Math. Anal. Appl., 2009, 352:669-671.
[15] Liao G., Fan Q., Minimal subshifts which display Schweizer-Smítal chaos and have zero topological entropy, Science in China, Ser. A, 1998, 41(1):33-38.
[16] Lu K., Yang Q., Xu W., Heteroclinic cycles and chaos in a class of 3D three-zone piecewise affine systems, J. Math. Anal. Appl., 2019, 478(1):58-81.
[17] Marotto F., Snap-back repellers imply chaos in Rn, J. Math. Anal. Appl., 1978, 63:199-223.
[18] Marotto F., Chaotic behavior in the Hénon mapping, Commun. Math. Phys., 1979, 68:187-194.
[19] Schweizer B., Smítal J., Measures of chaos and a spectral decomposition of dynamical systems on the interval, T. Amer. Math. Soc., 1994, 344(2):737-754.
[20] Shi Y., Chen G., Chaos for discrete dynamical systems in complete metric spaces, Chaos Solitons Fractals, 2004, 22:555-571.
[21] Shi Y., Chen G., Discrete chaos in Banach spaces, Sci. China Math., 2005, 48(2):222-238.
[22] Wu X., Chen Y., Tian J., et al., Chaotic dynamics of discrete multiple-time delayed neural networks of ring architecture evoked by external inputs, Internat. J. Bifur. Chaos, 2016, 26(11):1650179.
[23] Wu X., Chen Y., Wang F., Chaotic criteria in complete metric spaces (in Chinese), Acta Mathematica Sinica Chinese Series, 2020, 63:1-7.
[24] Ye X., Huang W., Shao S., An Introduction to Topological Dynamics (in Chinese), Science Press, Beijing, 2008.
[25] Zou Z., Symbolic Dynamics (in Chinese), Shanghai Science and Technology Press, Shanghai, 1997.
国家自然科学基金(11671410);广东省自然科学基金(2017A030313037,2018A0303130120);广东省普通高校自然科学重点项目(2019KZDXM036)资助项目
/
〈 | 〉 |