带有对数非线性项的回火分数p-Laplace系统的驻波解

王国涛, 侯文文, 张丽红, Ravi P. AGARWAL

数学学报 ›› 2021, Vol. 64 ›› Issue (3) : 501-514.

PDF(518 KB)
PDF(518 KB)
数学学报 ›› 2021, Vol. 64 ›› Issue (3) : 501-514. DOI: 10.12386/A2021sxxb0044
论文

带有对数非线性项的回火分数p-Laplace系统的驻波解

    王国涛1,2, 侯文文1, 张丽红1, Ravi P. AGARWAL3,2
作者信息 +

Standing Waves of Tempered Fractional p-Laplace Systems Involving Logarithmic Nonlinearity

    Guo Tao WANG1,2, Wen Wen HOU1, Li Hong ZHANG1, Ravi P. AGARWAL3,2
Author information +
文章历史 +

摘要

本文引入回火分数p-Laplace(-Δ-λ)ps,讨论了含有对数非线性项的回火分数p-Laplace系统的驻波解.通过极值原理和直接移动平面法,分别研究在全空间和上半空间上驻波解的径向对称性和非存在性.

Abstract

We first introduce tempered fractional p-Laplace (-Δ-λ)ps. Then we consider standing waves for tempered fractional p-Laplace systems involving logarithmic nonlinearity, combining the maximum principles with the method of moving planes, radial symmetry and nonexistence of the solution on the whole space and upper half space are obtained, respectively.

关键词

回火分数p-Laplace系统 / 直接移动平面法 / 对数非线性项

Key words

tempered fractional p-Laplace system / direct method of moving planes / logarithmic nonlinearity

引用本文

导出引用
王国涛, 侯文文, 张丽红, Ravi P. AGARWAL. 带有对数非线性项的回火分数p-Laplace系统的驻波解. 数学学报, 2021, 64(3): 501-514 https://doi.org/10.12386/A2021sxxb0044
Guo Tao WANG, Wen Wen HOU, Li Hong ZHANG, Ravi P. AGARWAL. Standing Waves of Tempered Fractional p-Laplace Systems Involving Logarithmic Nonlinearity. Acta Mathematica Sinica, Chinese Series, 2021, 64(3): 501-514 https://doi.org/10.12386/A2021sxxb0044

参考文献

[1] Brandle C., Colorado E., de Pablo A., et al., A concave-convex ellipotic problem involving the fractional Laplace, Proc. Roy. Soc. Edinburgh Sect. A, 2013, 143:39-71.
[2] Caffarelli L., Silvestre L., An extension problem related to the fractional Laplace, Comm. Partial Differential Equations, 2007, 32:1245-1260.
[3] Caffarelli L., Silvestre L., Regularity theory for fully nonlinear integro-differential equations, Comm. Pure Appl. Math., 2009, 62:597-638.
[4] Chen W. X., Fang Y. Q., Yang R., Liouville theorems involving the fractional Laplace on a half space, Adv. Math., 2015, 274:167-198.
[5] Chen W. X., Li C. M., Methods on Nonlinear Elliptic Equations. AIMS Book Series, Vol. 4:AIMs, Springfield, 2010.
[6] Chen W. X., Li C. M., Maximum principles for the fractional p-Laplace and symmetry of solutions, Adv. Math., 2018, 335:735-758.
[7] Chen W. X., Li C. M., Li Y., A direct method of moving planes for fractional Laplace, Adv. Math., 2017, 308:404-437.
[8] Chen W. X., Li C. M., Ma P., The Fractional Laplace, World Scientific, 2020.
[9] Chen W. X., Li C. M., Ou B., Classification of solutions for an integral equation, Comm. Pure Appl. Math., 2006, 59:330-343.
[10] Chen W. X., Li C. M., Ou B., Qualitative properties of solutions for an integral equation, Discrete Contin. Dyn. Syst., 2005, 12:347-354.
[11] Chen W. X., Zhu J. Y., Indefinite fractional elliptic problem and Liouville theorems, J. Differential Equations, 2016, 260:4758-4785.
[12] Chen Y. G., Liu B. Y., Symmetry and non-existence of positive solutions for fractional p-Laplace systems, Nonlinear Anal., 2019, 183:303-322.
[13] Csobo E., Genoud F., Ohta M., et al., Stability of standing waves for a nonlinear Klein-Gordon equation with delta potentials, J. Differential Equations, 2019, 268:353-388.
[14] Deng W. H., Li B. Y., Tian W. Y., et al., Boundary problems for the fractional and tempered fractional operators, Multiscale Model. Simul., 2018, 16(1):125-149.
[15] Dinh V., Existence, stability of standing waves and the characterization of finite time blow-up solutions for a system NLS with quadratic interaction, Nonlinear Anal., 2020, 190:111589.
[16] Duo S. W., Zhang Y. Z., Numerical approximations for the tempered fractional Laplace:error analysis and applications, J. Sci. Comput., 2019, 81(1):569-593.
[17] Le P., Ho V., Fractional p-Laplace problems with negative powers in a ball or an exterior domain, J. PseudoDiffer. Oper. Appl., 2020, 11:789-803.
[18] Lei Y. Y., Li C. M., Ma C., Asymptotic radial symmetry and growth estimates of positive solutions to weighted Hardy-Littlewood-Sobolev system of integral equations, Calc. Var. Partial Differential Equations, 2012, 45:43-61.
[19] Li C., Deng W. H., Zhao L. J., Well-posedness and numerical algorithm for the tempered fractional ordinary differential equations, Discrete Contin. Dyn. Syst. Ser. B, 2019, 24(4):1989-2015.
[20] Liu B. Y., Ma L., Radial symmetry results for fractional Laplace system, Nonlinear Anal., 2016, 146:120-135.
[21] Lu G. Z., Zhu J. Y., Symmetry and regularity of extremals of an integral equation related to the HardySobolev inequality, Calc. Var. Partial Differential Equations, 2011, 42:563-577.
[22] Ma L., Chen D. Z., A Liouville type theorem for an integral system, Commun. Pure Appl. Anal., 2006, 5:855-859.
[23] Ma L., Zhao L., Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Ration. Mech. Anal., 2010, 195:455-467.
[24] Ma L. W., Zhang Z. Q., Symmetry of positive solutions for Choquard equations with fractional p-Laplace, Nonlinear Anal., 2019, 182:248-262.
[25] Natali F., Jardoso E. Jr., Orbital stability of periodic standing waves for the logarithmic Klein-Gordon equation, J. Math. Anal. Appl., 2020, 484:123723, 43 pp.
[26] Ralf M., Klafter J., The random walk's guide to anomalous diffusion:a fractional dynamics approach, Phys. Rep., 2000, 339(1):1-77.
[27] Sun J., Nie D. X., Deng W. H., Algorithm implementation and numerical analysis for the two-dimensional tempered fractional Laplace, preprint, 2018, arXiv:1802.02349.
[28] Wang G. T., Ren X. T., Radial symmetry of standing waves for nonlinear fractional Laplace Hardy-Schrödinger systems, 2020, Appl. Math. Lett., 2020, 110:106560, 8 pp.
[29] Wang G. T., Ren X. T., Bai Z. B., et al., Radial symmetry of standing waves for nonlinear fractional Hardy-Schrödinger equation, Appl. Math. Lett., 2019, 96:131-137.
[30] Wu L. Y., Niu P. Q., Symmetry and nonexistence of positive solutions to fractional p-Laplace equations, Discrete Contin. Dyn. Syst., 2019, 39(3):1573-1583.
[31] Zhang L. H., Ahmad B., Wang G. T., et al., Radial symmetry of solution for fractional p-Laplace system, Nonlinear Anal., 2020, 196:111801.
[32] Zhang L. H., Hou W. W., Standing waves of nonlinear fractional p-Laplace Schrödinger equation involving logarithmic nonlinearity, Appl. Math. Lett., 2020, 102:106149.
[33] Zhang Z. J., Deng W. H., Fan H. T., Finite difference schemes for the tempered fractional Laplace, Numer. Math. Theor. Meth. Appl., 2019, 12(2):492-516.
[34] Zhang Z. J., Deng W. H., Karniadakis G. E., A Riesz basis Galerkin method for the tempered fractional Laplace, SIAM J. Numer. Anal., 2018, 56(5):3010-3039.
[35] Zhuo R., Chen W. X., Cui X. W., et al., Symmetry and non-existence of solutions for a nonlinear system involving the fractional Laplace, Discrete Contin. Dyn. Syst., 2016, 36(2):1125-1141.

基金

国家自然科学基金资助项目(12001344);山西省研究生教育创新项目(2019XY301);山西师范大学研究生科技创新项目(2019XSY025)
PDF(518 KB)

Accesses

Citation

Detail

段落导航
相关文章

/