
复Banach空间ℓp(Γ)(1 ≤ p < ∞)的Mazur-Ulam性质
The Mazur–Ulam Property for Complex Banach Space ℓp(Γ) (1 ≤ p < ∞)
1978年,Tingley提出著名的Tingley问题(等距延拓问题),受到许多学者的重视.遗憾的是到目前为止,即使对于二维Banach空间,这个问题仍是一个开问题.目前的研究主要集中在同类型或不同类型的经典Banach空间之间,并得到了肯定的回答.本文对复Banach空间ℓp(Γ)(1 ≤ p < ∞)与复Banach空间E之间的Tingley问题给出了肯定的回答,即复Banach空间ℓp(Γ)(1 ≤ p < ∞)满足Mazur-Ulam性质.
The Tingley's Probelm, which is named after the pioneering contribution of Tingley, is also known as the extension problem. It is nowadays a central topic for those researchers working on preservers. Up to the present, no negative counterexample is known and the general problem remains open even for two dimensional Banach spaces. The efforts gave rise to a wide list of positive answers to Tingley's problem for concrete classical Banach spaces and for some classes of Banach spaces. In this paper, we solved the Tingley's problem between the complex Banach spaces ℓp(Γ) (1 ≤ p < ∞) and complex Banach space E, i.e., we show that the complex Banach spaces ℓp(Γ) (1 ≤ p < ∞) satisfy the Mazur-Ulam property.
Tingley问题 / Mazur-Ulam性质 / 复Banach空间?p(Γ) {{custom_keyword}} /
Tingley's probelm / Mazur-Ulam property / complex Banach spaces ?p(Γ) {{custom_keyword}} /
[1] Alonso J., Benítez C., Some characteristic and non-characteristic properties of inner product spaces, J. Approx. Theory, 1988, 55:318-325.
[2] Becerra Guerrero J., Cueto-Avellaneda M., Fernández-Polo F. J., et al., On the extension of isometries between the unit spheres of a JBW*-triple and a Banach space, to appear in J. Inst. Math. Jussieu., doi:10.1017/S1474748019000173, arXiv:1808.01460.
[3] Boyko K., Kadets V., Martín M., et al., Properties of lush spaces and applications to Banach spaces with numerical index 1, Studia. Math., 2009, 190:117-133.
[4] Cabello Sánchez J., A reflection on Tingley's problem and some applications, J. Math. Anal. Appl., 2019, 476(2):319-336.
[5] Cheng L. X., Dong Y. B., On a generalized Mazur-Ulam question:extension of isometries between unit spheres of Banach spaces, J. Math. Anal. Appl., 2011, 377:464-470.
[6] Cueto-Avellaneda M., Peralta A. M., The Mazur-Ulam property for commutative von Neumann algebras, Linear and Multilinear Algebra, 2020, 68(2):337-362.
[7] Ding G. G., The 1-Lipschitz mapping between the unit spheres of two Hilbert spaces can be extended to a real linear isometry of the whole space, Sci. China Ser. A, 2002, 45(4):479-483.
[8] Ding G. G., The isometric extension problem in the unit spheres of ℓp(Γ) (p > 1) type spaces, Sci. China Ser. A, 2003, 46:333-338.
[9] Ding G. G., The isometric extension of the into mapping from a l∞(Γ)-type space to some Banach space, Illinois J. Math., 2007, 51:445-453.
[10] Ding G. G., On isometric extension problem between two unit spheres, Sci. China. Ser. A., 2009, 52:2069-2083.
[11] Dixmier J., Sur certains espaces considérés par M. H. Stone, Summa. Brasil. Math., 1951, 2:151-182.
[12] Fang X. N., Wang J. H., On extension of isometries between the unit spheres of normed space E and C(Ω), Acta. Math. Sin. Endl. Ser., 2006, 22:1819-1824.
[13] Fang X. N., Wang J. H., Extension of isometries between unit spheres of normed space E and ℓ1(Ω), Acta. Math. Sinica China Ser., 2008, 51(1):24-28.
[14] Fang X. N., Wang J. H., Extension of isometries on the unit sphere of ℓp(Γ) space, Sci. China Math., 2010, 53:1085-1096.
[15] Fernández-Polo F. J., Jordá E., Peralta A. M., Tingley's problem for p-Schatten von Neumann classes, to appear in J. Spectr. Theory, arXiv:1803.00763.
[16] Fernández-Polo F. J., Peralta A. M., On the facial structure of the unit ball in the dual space of a JB*-triple, Math. Ann., 2010, 348:1019-1032.
[17] Fernández-Polo F. J., Peralta A. M., Low rank compact operators and Tingley's problem, Adv. Math., 2018, 338:1-40.
[18] Fernández-Polo F. J., Peralta A. M., On the extension of isometries between the unit spheres of a C*-algebra and B(H), Trans. Amer. Math. Soc. Ser. B, 2018, 5:63-80.
[19] Gehér Gy P., A contribution to the Aleksandrov conservative distance problem in two dimensions, Linear Algebra Appl., 2015, 481:280-287.
[20] Jiménez-Vargas A., Morales-Campoy A., Peralta A. M., et al., The Mazur-Ulam property for the space of complex null sequences, Linear and Multilinear Algebra, 2019, 67(4):799-816.
[21] Kadets V., Martín M., Extension of isometries between unit spheres of finite-dimensional polyhedral Banach spaces, J. Math. Anal. Appl., 2012, 396:441-447.
[22] Liu R., On extension of isometries between unit spheres of ℓ∞(Γ)-type space and a Banach space E, J. Math. Anal. Appl., 2007, 333:959-970.
[23] Liu R., Zhang L., On extension of isometries and approximate isometries between unit spheres, J. Math. Anal. Appl., 2009, 352:749-761.
[24] Mankiewicz P., On extension of isometries in normed linear spaces, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 1972, 20:367-371.
[25] Mazur S., Ulam S., Sur less transformations isométriques despaces vectoriels normés, C. R. Acad. Sci. Paris, 1932, 194:946-948.
[26] Mori M., Ozawa N., Mankiewicz's theorem and the Mazur-Ulam property for C*-algebras, Studia Math., 2020, 250(3):265-281.
[27] Peralta A. M., Extending surjective isometries defined on the unit sphere of ℓ∞(Γ), Revista Matemática Complutense, 2019, 32:99-114.
[28] Ryotaro T., Tingley's problem on symmetric absolute normalized norms on R2, Acta. Math. Sin. Endl. Ser., 2014, 30:1324-1340.
[29] Sakai S., C*-and W*-algebras, Springer-Verlag, Berlin, New York, 1971.
[30] Tan D. N., Extension of isometries on unit sphere of L∞, Taiwanese J. Math., 2011, 15:819-827.
[31] Tan D. N., On extension of isometries on the unit spheres of Lp spaces for 0< p ≤ 1, Nonlinear Anal., 2011, 74:6981-6987.
[32] Tan D. N., Extension of isometries on the unit sphere of Lp-spaces, Acta. Math. Sin. Endl. Ser., 2012, 28:1197-1208.
[33] Tan D. N., Huang X. J., Liu R., Generalized-Lush spaces and the Mazur-Ulam property, Studia Math., 2013, 219:139-153.
[34] Tan D. N., Liu R., A note on the Mazur-Ulam property of almost-CL-spaces, J. Math. Anal. Appl., 2013, 405:336-341.
[35] Tingley D., Isometries of the unit spheres, Geom. Dedicata, 1987, 22:371-387.
[36] Wang R. D., Isometries between normed spaces which are surjective on a sphere, Illinois J. Math., 2009, 53(2):575-580.
[37] Wang R. D., On linear extension of 1-Lipschitz mapping from Hilbert space into a normed space, Acta Mathematica Scientia, 2010, 30B(1):161-165.
[38] Wang R. D., Huang X. J., Isometries and additive mapping on the unit spheres of normed spaces, Acta Math. Sin. Endl. Ser., 2017, 33(10):1431-1442.
[39] Wang R. D., Huang X. J., The Mazur-Ulam property for two-dimensional somewhere-flat spaces, Linear Algebra Appl., 2019, 562:55-62.
[40] Yang X. Z., On extension of isometries between unit spheres of Lp(μ) and Lp(ν, H) (1< p =2, H is a Hilbert space), J. Math. Anal. Appl., 2006, 322:985-992.
[41] Yang X. Z., Zhao X. P., On the extension problems of isometric and nonexpansive mappings, In:Mathematics Without Boundaries, Edited by Themistocles Rassias M and Pardalos Panos M., Springer, New York, 2014:725-748.
[42] Yi J. J., Wang R. D., Wang X. X., Extension of isometries between the unit spheres of complex ℓp(Γ) (p > 1) spaces, Acta Mathematica Scientia, 2014, 34B(5):1540-1550.
国家自然科学基金资助项目(11301384,11371201,11201337,11201338)
/
〈 |
|
〉 |