
C*-代数上强保k-skew交换性的映射
Strong k-skew Commutativity Preserving Maps on C*-algebras
设A是含单位元I的C*-代数,Φ:A→A是满射.本文证明Φ强保k-skew交换性,即*[Φ(A),Φ(B)]k=*[A,B]k,∀A,B∈A当且仅当Φ(A)=Φ(I)A,∀A∈A,其中Φ(I)∈Z(A),Φ(I)*=Φ(I),Φ(I)k+1=I,Z(A)是A的中心.特别地,若Z(A)=CI,则Φ:A→A强保k-skew交换性当且仅当Φ(A)=A,∀A∈A或Φ(A)=-A,∀A∈A.若k是偶数,后一种情形不会出现.
Let A be a C*-algebra with the unit I, Φ:A → A be a surjective map. We show that Φ preserves strong k-skew commutativity, that is, Φ satisfies *[Φ(A), Φ(B)]k=*[A, B]k, ∀ A, B ∈ A if and only if Φ(A)=Φ(I)A, ∀ A ∈ A, where Φ(I) ∈ Z (A) with Φ(I)*=Φ(I) and Φ(I)k+1=I, Z (A) is the center of A. In particular, if Z (A)=CI, then Φ:A → A preservers strong k-skew commutativity if and only if Φ(A)=A, ∀ A ∈ A or Φ(A)=-A, ∀ A ∈ A. The latter case does not occur if k is even.
C*-代数 / k-skew交换子 / 强保k-skew交换性映射 {{custom_keyword}} /
C*-algebras / k-skew commutator / strong k-skew commutativity preserving maps {{custom_keyword}} /
[1] Cui J. L., Park C., Maps preserving strong skew Lie product on factor von Neumann algebra, Acta Math. Sci., 2012, 32:531-538.
[2] Hou J. C., Wang W., Strong 2-skew commutativity preserving maps on prime rings with involution, Bull. Mala. Math. Sci., 2019, 42:33-49.
[3] Liu L., Strong skew commutativity preserving maps on rings, Lin. Multilin. Alg., 2016, 100:78-85.
[4] Semrl P., Jordan *-derivations of standard operator algebras, Proc. Amer. Math. Soc., 1994, 120:515-519.
[5] Singer I. M., Uniformly continuous representation of Lie groups, Annals of Math., 1952, 56:242-247.
[6] Wang W, Hou J. C., Strong k-skew commutativity preserving maps on self-adjoint standard operator algebras, Acta Math. Sin. Chin. Ser., 2017, 60:39-52.
国家自然科学基金资助项目(11001194)
/
〈 |
|
〉 |