广义Gauss和及其四次均值

张兰, 吕星星

数学学报 ›› 2021, Vol. 64 ›› Issue (4) : 569-578.

PDF(343 KB)
PDF(343 KB)
数学学报 ›› 2021, Vol. 64 ›› Issue (4) : 569-578. DOI: 10.12386/A2021sxxb0049
论文

广义Gauss和及其四次均值

    张兰1, 吕星星2
作者信息 +

On a Certain Generalized Gauss Sums and Its Fourth Power Mean

    Lan ZHANG1, Xing Xing LV2
Author information +
文章历史 +

摘要

本文利用初等方法以及同余方程解的个数,研究一类广义Gauss和四次均值的计算问题,并给出了一个精确的计算公式.

Abstract

The main purpose of this paper is using the elementary methods and the number of solutions of some congruence equations to study the computational problem of the fourth power mean of a class of certain generalized Gauss sums, and give an exact calculating formula for it.

关键词

同余方程 / 广义Gauss和 / 四次均值 / 计算公式

Key words

congruence equation / generalized Gauss sums / the fourth power mean / calculating formula

引用本文

导出引用
张兰, 吕星星. 广义Gauss和及其四次均值. 数学学报, 2021, 64(4): 569-578 https://doi.org/10.12386/A2021sxxb0049
Lan ZHANG, Xing Xing LV. On a Certain Generalized Gauss Sums and Its Fourth Power Mean. Acta Mathematica Sinica, Chinese Series, 2021, 64(4): 569-578 https://doi.org/10.12386/A2021sxxb0049

参考文献

[1] Apostol T. M., Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976.
[2] Chowla S., On Kloosterman's sum, Norkse Vid. Selsk. Forh. Trondheim, 1967, 40:70-72.
[3] Deligne P., Applications de la formule des traces aux sommes trigonomé trigues, 1977:68-232.
[4] Duke W., Iwaniec H., A relation between cubic exponential and Kloosterman sums, Contemp. Math., 1993, 143:255-258.
[5] Iwaniec H., Topics in Classical Automorphic Forms, Grad. Stud. Math., 1997, Vol.17:61-63.
[6] Luo W., Bounds for incomplete Kloostermann sums, Journal of Number Theory, 1999, 75:41-46.
[7] Malyshev A. V., A generalization of Kloosterman sums and their estimates (in Russian), Vestnik Leningrad University, 1960, 15:59-75.
[8] Mordell L. J., On a special polynomial congruence and exponential sum, In:Calcutta Math. Soc. Golden Jubilee Commemoration Vol. 59, 1963, 29-32.
[9] Schmidt W. M., Equations over Finite Fields, An Elementary Approach, Lecture Notes in Mathematics, Vol. 5, Springer-Verlag, Berlin, 1976.
[10] Shparlinski I. E., Bounds of incomplete multiple Kloostermann sums, Journal of Number Theory, 2007, 126:68-73.
[11] Smith R. A., On n-dimensional Kloostermann sums, Journal of Number Theory, 1979, 11:324-343.
[12] Ye Y., Identities of incomplete Kloostermann sums, Proc. Amer. Math. Soc., 1999, 127:2591-2600.
[13] Zhang W. P., On the fourth and sixth power mean of the classical Kloosterman sums, Journal of Number Theory, 2011, 131:228-238.
[14] Zhang W. P., On the fourth power mean of the general Kloosterman sums, Indian Journal of Pure and Applied Mathematics, 2004, 35:237-242.
[15] Zhang W. P., On the fourth power mean of the general Kloosterman sums, Journal of Number Theory, 2016, 169:315-326.
[16] Zhang W. P., Han D., A new identity involving the classical Kloosterman sums and 2-dimensional Kloostermann sums, International Journal of Number Theory, 2016, 12:111-119.
[17] Zhang W. P., Li X. X., The fourth power mean of the general 2-dimensional Kloostermann sums mod p, Acta Mathematica Sinica, English Series, 2017, 33:861-867.
[18] Zhang W. P., Lv X. X., The fourth power mean of the general 3-dimensional Kloostermann sums mod p, Acta Mathematica Sinica, English Series, 2019, 35:369-377.
[19] Zhang W. P., Shen S. M., A note on the fourth power mean of the generalized Kloosterman sums, Journal of Number Theory, 2017, 174:419-426.

基金

国家自然科学基金资助项目(11771351);陕西省教育厅2019年科研项目(19JK0436)
PDF(343 KB)

Accesses

Citation

Detail

段落导航
相关文章

/