积分估计与正规权Dirichlet空间上的Cesàro型算子
An Integral Estimate and Cesàro Type Operators on Normal Weight Dirichlet Spaces
设μ是[0,1)上的一个正规函数,本文给出了正规权测度下单位球内单变点球体积分的部分情况下的双向估计,在特殊情况下给出了所有指标情形的双向估计.作为一个应用,本文还给出了一些情况下正规权Dirichlet空间上Cesàro型算子有界或紧的充要条件.
Let μ be a normal function on[0, 1). In this paper, the authors give the bidirectional estimates of the volume integral of a single variable point in the unit ball under the normal weight measure in some cases, and give the bidirectional estimates for all indicators in special cases. As an application, the authors give some necessary and sufficient conditions for the boundedness or compactness of Cesàro type operator on normal weight Dirichlet spaces.
积分估计 / 正规权测度 / 正规权Dirichlet空间 / Cesà / ro型算子 / 有界性和紧性 {{custom_keyword}} /
integral estimate / normal weight measure / normal weight Dirichlet space / Cesà / ro type operator / boundedness and compactness {{custom_keyword}} /
[1] Aleman A., Siskakis A. G., An integral operator on Hp, Complex Variables, 1995, 28:149-158.
[2] Aleman A., Siskakis A. G., Integration operators on Bergman spaces, Indiana Univ. Math. J., 1997, 46:337-356.
[3] Hu Z. J., Extended Cesàro operators on mixed norm space, Proc. Amer. Math. Soc., 2003, 131(7):2171-2179.
[4] Hu Z. J., Extended Cesàro operators on the Bloch space in the unit ball of Cn, Acta Math. Sci. Ser. B (Engl. Ed.), 2003, 23B(4):561-566.
[5] Li S. L., Zhang X. J., Xu S., The Bergman type operators on the F (p, q, s) type spaces in Cn, Chin. J. of Contemp. Math., 2017, 38(4):303-316.
[6] Miao J., The Cesàro operator is bounded on Hp for 0< p < 1, Proc. Amer. Math. Soc., 1992, 116:1077-1079.
[7] Ortega J., Fabrega J., Point-wise multipliers and Corona type decomposition in BMOA, Ann. Inst. Fourier Grenoble, 1996, 46:111-137.
[8] Ortega J., Fabrega J., Corona type decomposition in some Besov spaces, Math. Scand., 1996, 78:93-111.
[9] Rudin W., Function Theory in the Unit Ball of Cn, Springer-Verlag, New York, 1980.
[10] Shi J. H., Ren G. B., Boundedness of the Cesàro operator on mixed norm spaces, Proc. Amer. Math. Soc., 1998, 126:3553-3560.
[22] Siskakis A. G., Composition semigroups and the Cesàro operator on Hp, J. London Math. Soc., 1987, 36(2):153-164.
[12] Tang X. M., Extended Cesàro operators between Bloch-type spaces in the unit ball of Cn, Math. Anal. Appl., 2007, 326(2):1199-1211.
[13] Xiao J., Cesàro operators on Hardy, BMOA and Bloch spaces, Arch Math., 1997, 68:398-406.
[14] Xiao J., Tan H., p-Bergman spaces, α-Bloch spaces, little α-Bloch spaces and Cesàro means (in Chinese), Chin. Ann. of Math., 1998, 19A:187-196.
[15] Zhang X. J., Weighted Cesàro operators on Dirichlet type spaces and Bloch type spaces of Cn (in Chinese), Chin. Ann. of Math., 2005, 26A(1):139-150.
[16] Zhang X. J., Guo Y. T., Shang Q. L., et al., The Gleason's problem on F (p, q, s) type spaces in the unit ball of Cn, Complex Anal. Oper. Theory, 2018, 12(5):1251-1265.
[17] Zhang X. J., Li S. L., Shang Q. L., et al., An integral estimate and the equivalent norms on F (p, q, s, k) spaces in the unit ball, Acta Math. Sci., 2018, 38B(6):1861-1880.
[18] Zhang X. J., Lv R. X., Tang P. C., Several equivalent characterizations of general Hardy type spaces on the unit ball in Cn, Chin. J. of Conte. Math., 2019, 40(2):101-114.
[19] Zhang X. J., Xi L. H., Fan H. X., et al., Atomic decomposition of μ-Bergman space in Cn, Acta Math. Sci. Ser. B (Engl. Ed.), 2014, 34B(3):779-789.
[20] Zhao R. H., Distances from Bloch functions to some Möbius invariant spaces, Annl. Acad. Sci. Fen. Math., 2008, 33:303-313.
[21] Zhao Y. H., Zhang X. J., Integral-type operators on Zygmund type spaces on the unit ball, Adv. Math. China, 2016, 45(5):755-766.
[22] Zhu K. H., Spaces of Holomorphic Functions in the Unit Ball, Springer-Verlag (GTM 226), New York, 2005.
国家自然科学基金资助项目(11942109);湖南省研究生科研创新项目(CX2018B286)
/
〈 | 〉 |