多线性奇异积分交换子的有界性

瞿萌, 方小珍, 王敏

数学学报 ›› 2021, Vol. 64 ›› Issue (4) : 677-686.

PDF(464 KB)
PDF(464 KB)
数学学报 ›› 2021, Vol. 64 ›› Issue (4) : 677-686. DOI: 10.12386/A2021sxxb0058
论文

多线性奇异积分交换子的有界性

    瞿萌, 方小珍, 王敏
作者信息 +

Boundedness of the Commutators of Multilinear Singular Integrals

    Meng QU, Xiao Zhen FANG, Min WANG
Author information +
文章历史 +

摘要

在多线性Calderón-Zygmund算子T的最小非退化假设条件下,本文给出了一类交换子TbjLp1×…×LpmLq有界性的刻画.这一结果将Hytönen关于线性交换子的部分结果推广到多线性情形.

Abstract

This paper characterizes the Lp1×…×LpmLq boundedness for a class of commutators Tbj, under the minimal non-degenerate assumption of the multilinear Calder′ on-Zygmund operator T. This result extends some results about the linear commutators established by Hyt¨ onen to the multilinear case.

关键词

多线性算子 / 交换子 / 非退化条件

Key words

multilinear Calderón-Zygmund operator / commutator / non-degeneracy condition

引用本文

导出引用
瞿萌, 方小珍, 王敏. 多线性奇异积分交换子的有界性. 数学学报, 2021, 64(4): 677-686 https://doi.org/10.12386/A2021sxxb0058
Meng QU, Xiao Zhen FANG, Min WANG. Boundedness of the Commutators of Multilinear Singular Integrals. Acta Mathematica Sinica, Chinese Series, 2021, 64(4): 677-686 https://doi.org/10.12386/A2021sxxb0058

参考文献

[1] Chaffee L., Characterization of BMO through commutators of bilinear singular integral operators, Proc. Amer. Math. Soc., 1999, 127(1):79-87.
[2] Chaffee L., Cruz-Uribe D., Necessary conditions for the boundedness of linear and bilinear commutators on Banach function spaces, Math. Inequal. Appl., 2017, 21(1):1-16.
[3] Christ M., Journé J., Polynomial growth estimates for multilinear singular integral operators, Acta Math., 1987, 159(1):51-80.
[4] Fabes E., Jerison D., Kenig C., Multilinear Littlewood-Paley estimates with applications to partial differential equations, Proc. Natl. Acad. Sci., 1982, 79(18):5746-5750.
[5] Fabes E., Jerison D., Kenig C., Multilinear square functions and partial differential equations, Amer. J. Math., 1985, 107(6):1325-1368.
[6] Grafakos L., Torres R., Multilinear Calderón-Zygmund theory, Adv. Math., 2002, 165:124-164.
[7] Guo W. C., Lian J. L., Wu H. X., The unified theory for the necessity of bounded commutators and applications, J. Geom. Anal., 2020, 30(4):3995-4035.
[8] Huang Z., Huang A. W., Xu J. S., Multilinear commutators of multilinear singular integrals with Lipschitz functions (in Chinese), J. Mathematics, 2011, 31(4):738-748.
[9] Hytönen T. P., The Lp-to-Lq boundedness of commutators with applications to the Jacobian operator, arXiv:1804.11167.
[10] Lerner A., Ombrosi S., Pérez C., et al., New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory, Adv. Math., 2009, 220(1):1222-1264.
[11] Li L., Ma B. L., Zhou J., Multilinear Calderón-Zygmund operators on Morrey space with non-doubling measures, Publ. Math. Debrecen, 2011, 78(2):283-296.
[12] Li Z. Y., Xue Q. Y., Endpoint estimates for the commutators of multilinear Calderón-Zygmund operators with Dini type kernels, J. Inequal. Appl., 2016, No. 252, 22 pp.
[13] Lin Y., Zhang N., Sharp maximal and weighted estimates for multilinear iterated commutators of multilinear integrals with generalized kernels, J. Inequal. Appl., 2017, No. 276, 15 pp.
[14] Liu F., Wu H. X., Zhang D. Q., On the multilinear singular integrals and commutators in the weighted amalgam spaces, J. Funct. Spaces, 2014, Art. ID686l7, 12 pp.
[15] Lu G., Zhang P., Multilinear Calderón-Zygmund operators with kernels of Dini's type and applications, Nonlinear Anal., 2014, 107:92-117.
[16] Maldonado D., Naibo V., Weighted norm inequalities for paraproducts and bilinear pseudodifferential operators with mild regularity, J. Fourier Anal. Appl., 2009, 15:218-261.
[17] Mo H. X., Lu S. Z., Commutators generated by multilinear Calderón-Zygmund type singular integral and Lipschitz function, Acta Math. Appl. Sin. Engl. Ser., 2014, 30(4):903-912.
[18] Pérez C., Torres R., Sharp maximal function estimates for multilinear singular integrals, Contemp. Math., 2003, 320:323-331.
[19] Si Z. Y., Xue Q. Y., A note on vector-valued maximal multilinear operators and their commutators, Math. Inequal. Appl., 2016, 19(1):249-262.
[20] Sun Y. L., Zhao P. F., The boundedness of commutator of multilinear singular integral operator of Calderón-Zygmund (in Chinese), Natural Science J. of Harbin Norm. Univ., 2009, 6:23-26.
[21] Wang P. W., Liu Z. G., Weighted norm inequalities for multilinear Calderón-Zygmund operators in generalized Morrey spaces, J. Inequal. Appl., 2017, No. 48, 10 pp.
[22] Wang W., Xu J. S., Commutators of multilinear singular integrals operators with Lipschitz function, Commun. Math. Res., 2009, 25(4):318-328.
[23] Xu J. S., Multilinear commutators of multilinear singular integrals, Acta Math. Sinica, Chinese Series, 2008, 51(5):1021-1035.
[24] Xue Q. Y., Yan J. Q., Generalized commutators of multilinear Calderón-Zygmund type operators, J. Math. Soc. Japan, 2016, 68(3):1161-1188.
[25] Zhou X. S., Huang C. X., Hu H. J., Inequality estimates for the boundedness of multilinear singular and fractional integral operators, J. Inequal. Appl., 2013, No. 303, 15 pp.

基金

国家自然科学基金资助项目(11871096)
PDF(464 KB)

101

Accesses

0

Citation

Detail

段落导航
相关文章

/