This paper characterizes the Lp1×…×Lpm → Lq boundedness for a class of commutators Tbj, under the minimal non-degenerate assumption of the multilinear Calder′ on-Zygmund operator T. This result extends some results about the linear commutators established by Hyt¨ onen to the multilinear case.
Meng QU, Xiao Zhen FANG, Min WANG.
Boundedness of the Commutators of Multilinear Singular Integrals. Acta Mathematica Sinica, Chinese Series, 2021, 64(4): 677-686 https://doi.org/10.12386/A2021sxxb0058
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Chaffee L., Characterization of BMO through commutators of bilinear singular integral operators, Proc. Amer. Math. Soc., 1999, 127(1):79-87. [2] Chaffee L., Cruz-Uribe D., Necessary conditions for the boundedness of linear and bilinear commutators on Banach function spaces, Math. Inequal. Appl., 2017, 21(1):1-16. [3] Christ M., Journé J., Polynomial growth estimates for multilinear singular integral operators, Acta Math., 1987, 159(1):51-80. [4] Fabes E., Jerison D., Kenig C., Multilinear Littlewood-Paley estimates with applications to partial differential equations, Proc. Natl. Acad. Sci., 1982, 79(18):5746-5750. [5] Fabes E., Jerison D., Kenig C., Multilinear square functions and partial differential equations, Amer. J. Math., 1985, 107(6):1325-1368. [6] Grafakos L., Torres R., Multilinear Calderón-Zygmund theory, Adv. Math., 2002, 165:124-164. [7] Guo W. C., Lian J. L., Wu H. X., The unified theory for the necessity of bounded commutators and applications, J. Geom. Anal., 2020, 30(4):3995-4035. [8] Huang Z., Huang A. W., Xu J. S., Multilinear commutators of multilinear singular integrals with Lipschitz functions (in Chinese), J. Mathematics, 2011, 31(4):738-748. [9] Hytönen T. P., The Lp-to-Lq boundedness of commutators with applications to the Jacobian operator, arXiv:1804.11167. [10] Lerner A., Ombrosi S., Pérez C., et al., New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory, Adv. Math., 2009, 220(1):1222-1264. [11] Li L., Ma B. L., Zhou J., Multilinear Calderón-Zygmund operators on Morrey space with non-doubling measures, Publ. Math. Debrecen, 2011, 78(2):283-296. [12] Li Z. Y., Xue Q. Y., Endpoint estimates for the commutators of multilinear Calderón-Zygmund operators with Dini type kernels, J. Inequal. Appl., 2016, No. 252, 22 pp. [13] Lin Y., Zhang N., Sharp maximal and weighted estimates for multilinear iterated commutators of multilinear integrals with generalized kernels, J. Inequal. Appl., 2017, No. 276, 15 pp. [14] Liu F., Wu H. X., Zhang D. Q., On the multilinear singular integrals and commutators in the weighted amalgam spaces, J. Funct. Spaces, 2014, Art. ID686l7, 12 pp. [15] Lu G., Zhang P., Multilinear Calderón-Zygmund operators with kernels of Dini's type and applications, Nonlinear Anal., 2014, 107:92-117. [16] Maldonado D., Naibo V., Weighted norm inequalities for paraproducts and bilinear pseudodifferential operators with mild regularity, J. Fourier Anal. Appl., 2009, 15:218-261. [17] Mo H. X., Lu S. Z., Commutators generated by multilinear Calderón-Zygmund type singular integral and Lipschitz function, Acta Math. Appl. Sin. Engl. Ser., 2014, 30(4):903-912. [18] Pérez C., Torres R., Sharp maximal function estimates for multilinear singular integrals, Contemp. Math., 2003, 320:323-331. [19] Si Z. Y., Xue Q. Y., A note on vector-valued maximal multilinear operators and their commutators, Math. Inequal. Appl., 2016, 19(1):249-262. [20] Sun Y. L., Zhao P. F., The boundedness of commutator of multilinear singular integral operator of Calderón-Zygmund (in Chinese), Natural Science J. of Harbin Norm. Univ., 2009, 6:23-26. [21] Wang P. W., Liu Z. G., Weighted norm inequalities for multilinear Calderón-Zygmund operators in generalized Morrey spaces, J. Inequal. Appl., 2017, No. 48, 10 pp. [22] Wang W., Xu J. S., Commutators of multilinear singular integrals operators with Lipschitz function, Commun. Math. Res., 2009, 25(4):318-328. [23] Xu J. S., Multilinear commutators of multilinear singular integrals, Acta Math. Sinica, Chinese Series, 2008, 51(5):1021-1035. [24] Xue Q. Y., Yan J. Q., Generalized commutators of multilinear Calderón-Zygmund type operators, J. Math. Soc. Japan, 2016, 68(3):1161-1188. [25] Zhou X. S., Huang C. X., Hu H. J., Inequality estimates for the boundedness of multilinear singular and fractional integral operators, J. Inequal. Appl., 2013, No. 303, 15 pp.