带有某种遗传特征的非经典反应扩散方程的渐近行为

朱凯旋, 谢永钦, 张江卫

数学学报 ›› 2021, Vol. 64 ›› Issue (5) : 721-736.

PDF(523 KB)
PDF(523 KB)
数学学报 ›› 2021, Vol. 64 ›› Issue (5) : 721-736. DOI: 10.12386/A2021sxxb0061
论文

带有某种遗传特征的非经典反应扩散方程的渐近行为

    朱凯旋1, 谢永钦2, 张江卫2
作者信息 +

Asymptotic Behavior of the Nonclassical Reaction-diffusion Equations Containing some Hereditary Characteristic

    Kai Xuan ZHU1, Yong Qin XIE2, Jiang Wei ZHANG2
Author information +
文章历史 +

摘要

本文证明带有时滞项gtut)的非经典反应扩散方程在依赖于时间的空间中拉回吸引子的存在性,其中外力项kx)∈H-1(Ω),非线性项f分别满足临界指数增长和任意q-1(q≥2)次多项式增长.

Abstract

We prove the existence of the pullback attractors in the time-dependent space for the nonclassical reaction-diffusion equations with delay term g(t, ut), the forcing term k(x) ∈ H-1(Ω) and the nonlinearity f satisfying the critical exponent growth and the polynomial growth of arbitrary q - 1 (q ≥ 2) order.

关键词

非经典反应扩散方程 / 时滞 / 临界指数增长 / 任意次多项式增长 / 拉回吸引子

Key words

nonclassical reaction-diffusion equations / delays / critical exponent growth / polynomial growth of arbitrary order / pullback attractors

引用本文

导出引用
朱凯旋, 谢永钦, 张江卫. 带有某种遗传特征的非经典反应扩散方程的渐近行为. 数学学报, 2021, 64(5): 721-736 https://doi.org/10.12386/A2021sxxb0061
Kai Xuan ZHU, Yong Qin XIE, Jiang Wei ZHANG. Asymptotic Behavior of the Nonclassical Reaction-diffusion Equations Containing some Hereditary Characteristic. Acta Mathematica Sinica, Chinese Series, 2021, 64(5): 721-736 https://doi.org/10.12386/A2021sxxb0061

参考文献

[1] Arrieta J., Carvalho A. N., Hale J. K., A damped hyperbolic equation with critical exponent, Comm. Partial Differential Equations, 1992, 17:841-866.
[2] Babin A. V., Vishik M. I., Attractors of Evolution Equations, North-Holland, Amsterdam, 1992.
[3] Ball J., Global attractors for damped semilinear wave equations, Discrete Contin. Dyn. Syst., 2004, 10:31-52.
[4] Caraballo T., Márquez-Durán A. M., Existence, uniqueness and asymptotic behavior of solutions for a nonclassical diffusion equation with delay, Dyn. Partial Differ. Equ., 2013, 10:267-281.
[5] Caraballo T., Márquez-Durán A. M., Rivero F., Well-posedness and asymptotic behavior of a nonclassical nonautonomous diffusion equation with delay, Internat J. Bifur. Chaos Appl. Sci. Engrg., 2015, 25:1540021, 11 pp.
[6] Caraballo T., Márquez-Durán A. M., Rivero F., Asymptotic behaviour of a non-classical and non-autonomous diffusion equation containing some hereditary characteristic, Discrete Contin. Dyn. Syst. Ser. B, 2017, 22:1817-1833.
[7] Cholewa J. W., Dlotko T., Global Attractors in Abstract Parabolic Problems, Cambridge University Press, Cambridge, 2000.
[8] Chueshov I., Lasiecka I., Long-time dynamics of von Karman semi-flows with non-linear boundary/interior damping, J. Differential Equations, 2007, 233:42-86.
[9] Conti M., Pata V., Asymptotic structure of the attractor for processes on time-dependent spaces, Nonlinear Anal. Real World Appl., 2014, 19:1-10.
[10] Conti M., Pata V., Temam R., Attractors for process on time-dependent spaces:Applications to wave equations, J. Differential Equations, 2013, 255:1254-1277.
[11] García-Luengo J., Marín-Rubio P., Reaction-diffusion equations with non-autonomous force in H-1 and delays under measurability conditions on the driving delay term, J. Math. Anal. Appl., 2014, 417:80-95.
[12] Hale J. K., Asymptotic Behavior of Dissipative Systems, AMS, Providence, RI, 1988.
[13] Hale J. K., Verduyn Lunel S. M., Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993.
[14] Hu Z. Y., Wang Y. J., Pullback attractors for a nonautonomous nonclassical diffusion equation with variable delay, J. Math. Phys., 2012, 53:072702, 17 pp.
[15] Khanmamedov A. Kh., Global attractors for von Karman equations with nonlinear interior dissipation, J. Math. Anal. Appl., 2006, 318:92-101.
[16] Kloeden P. E., Lorenz T., Pullback incremental attraction, Nonauton. Dyn. Syst., 2014, 1:53-60.
[17] Lions J. L., Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Paris, 1969.
[18] Meng F. J., Yang M. H., Zhong C. K., Attractors for wave equations with nonlinear damping on timedependent space, Discrete Contin. Dyn. Syst. Ser. B, 2016, 21:205-225.
[19] Robinson J. C., Infinite-Dimensional Dynamical Systems:An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge University Press, Cambridge, 2001.
[20] Simon J., Compact sets in the space Lp(0, T; B), Ann. Mat. Pura Appl., 1987, 146:65-96.
[21] Sun C. Y., Cao D. M., Duan J. Q., Non-autonomous dynamics of wave equations with nonlinear damping and critical nonlinearity, Nonlinearity, 2006, 19:2645-2665.
[22] Sun C. Y., Yang M. H., Dynamics of the nonclassical diffusion equations, Asymptotic Anal., 2008, 59:51-81.
[23] Temam R., Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1997.
[24] Xie Y. Q., Li Q. S., Zhu K. X., Attractors for nonclassical diffusion equations with arbitrary polynomial growth, Nonlinear Anal. Real World Appl., 2016, 31:23-37.
[25] Zelik S., Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent, Commun. Pure Appl. Anal., 2004, 3:921-934.
[26] Zhong C. K., Yang M. H., Sun C. Y., The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations, J. Differential Equations, 2006, 223:367-399.
[27] Zhou F., Sun C. Y., Li X., Dynamics for the damped wave equations on time-dependent domains, Discrete Contin. Dyn. Syst. Ser. B, 2018, 23:1645-1674.
[28] Zhu K. X., Sun C. Y., Pullback attractors for nonclassical diffusion equations with delays, J. Math. Phys., 2015, 56:092703, 20 pp.
[29] Zhu K. X., Xie Y. Q., Zhou F., Pullback attractors for a damped semilinear wave equation with delays, Acta Math. Sin. Engl. Ser., 2018, 34:1131-1150.
[30] Zhu K. X., Xie Y. Q., Zhou F., Lp-pullback attractors for non-autonomous reaction-diffusion equations with delays, Topol. Methods Nonlinear Anal., 2019, 54:9-27.

基金

湖南省自然科学基金(2018JJ2416)及湖南省教育厅科学研究基金(20C1263);湖南文理学院科技创新团队资助项目(数值计算与随机过程及其应用)

PDF(523 KB)

Accesses

Citation

Detail

段落导航
相关文章

/