
穿孔度量空间Gromov双曲性的几何特征
Geometric Characterizations of Gromov Hyperbolicity for Punctured Metric Spaces
本文讨论穿孔度量空间Gromov双曲性的几何特征.对该类空间,我们证明了一致性,关于穿孔点的环拟凸性和拟双曲度量的Gromov双曲性是互相等价的.应用这一结果,给出了一致度量空间中的一个内点可去的充分必要条件.
We investigate certain geometric characterizations of Gromov hyperbolicity for punctured metric spaces. We show that for such spaces, uniformity, annular quasiconvexity with respect to the punctured point, and Gromov hyperbolicity respecting the quasihyperbolic metric are mutually quantitatively equivalent. As an application, we obtain a sufficient and necessary condition for an interior point in a uniform metric space to be removable.
穿孔空间 / Gromov双曲空间 / 一致空间 / 环拟凸性 / Gehring—Hayman 不等式 {{custom_keyword}} /
punctured spaces / Gromov hyperbolic spaces / uniform spaces / annular quasiconvexity / Gehring-Hayman inequality {{custom_keyword}} /
[1] Balogh Z. M., Buckley S. M., Geometric characterizations of Gromov hyperbolicity, Invent. Math., 2003, 153:261-301.
[2] Bjorn A., Bjorn J., Shanmugalingam N., Bounded geometry and p-harmonic functions under uniformization and hyperbolization, arXiv:1908.04644, 2019.
[3] Bonk M., Heinonen J., Koskela P., Uniformizing Gromov hyperbolic spaces, Asterisque, 2001, 270:1-99.
[4] Bridson M. R., Haefliger A., Metric Spaces of Non-positive Curvature, Grundlehren der Mathematischen Wissenschaften, Vol. 319, Springer-Verlag, Berlin, 1999.
[5] Buckley S. M., Herron D., Xie X., Metric space inversions, quasihyperbolic distance, and uniform spaces, Indiana Univ. Math. J., 2008, 57:837-890.
[6] Gehring F. W., Osgood B. G., Uniform domains and the quasi-hyperbolic metric, J. Analyse Math., 1979, 36:50-74.
[7] Gehring F. W., Palka B. P., Quasiconformally homogeneous domains, J. Analyse Math., 1976, 30:172-199.
[8] Gromov M., Hyperbolic groups, In:Essays in Group Theory, 75-263, Math. Sci. Res. Inst. Publ., Vol. 8, Springer, New York, 1987.
[9] Herron D., Shanmugalingam N., Xie X., Uniformity from Gromov hyperbolicity, Illinois J. Math., 2008, 52:1065-1109.
[10] Koskela P., Lammi P., Gehring-Hayman Theorem for conformal deformations, Comment Math. Helv., 2013, 88:185-203.
[11] Koskela P., Lammi P., Manojlovi? V., Gromov hyperbolicity and quasihyperbolic geodesics, Ann. Sci. Éc. Norm. Supér, 2014, 47:975-990.
[12] Lammi P., Quasihyperbolic boundary condition:compactness of the inner boundary, Illinois J. Math., 2011, 55:1221-1233.
[13] Väisälä J., Gromov hyperbolic spaces, Expo. Math., 2005, 23:187-231.
[14] Väisälä J., Hyperbolic and uniform domains in Banach spaces, Ann. Acad. Sci. Fenn. Math., 2005, 30:261-302.
国家自然科学基金青年项目(11901090);广东省教育厅项目(2018KQNCX285,2018KTSCX245);湖南省双一流应用特色学科(湘教通2018469)及省重点实验室(智能信息处理与应用2016TP1020);湖南省自然科学基金(2020JJ6038);高校基本科研业务费—青年教师培育项目(20lgpy148)
/
〈 |
|
〉 |