穿孔度量空间Gromov双曲性的几何特征

周青山, 李浏兰, 李希宁

数学学报 ›› 2021, Vol. 64 ›› Issue (5) : 737-746.

PDF(469 KB)
PDF(469 KB)
数学学报 ›› 2021, Vol. 64 ›› Issue (5) : 737-746. DOI: 10.12386/A2021sxxb0062
论文

穿孔度量空间Gromov双曲性的几何特征

    周青山1, 李浏兰2, 李希宁3
作者信息 +

Geometric Characterizations of Gromov Hyperbolicity for Punctured Metric Spaces

    Qing Shan ZHOU1, Liu Lan LI2, Xi Ning LI3
Author information +
文章历史 +

摘要

本文讨论穿孔度量空间Gromov双曲性的几何特征.对该类空间,我们证明了一致性,关于穿孔点的环拟凸性和拟双曲度量的Gromov双曲性是互相等价的.应用这一结果,给出了一致度量空间中的一个内点可去的充分必要条件.

Abstract

We investigate certain geometric characterizations of Gromov hyperbolicity for punctured metric spaces. We show that for such spaces, uniformity, annular quasiconvexity with respect to the punctured point, and Gromov hyperbolicity respecting the quasihyperbolic metric are mutually quantitatively equivalent. As an application, we obtain a sufficient and necessary condition for an interior point in a uniform metric space to be removable.

关键词

穿孔空间 / Gromov双曲空间 / 一致空间 / 环拟凸性 / Gehring—Hayman 不等式

Key words

punctured spaces / Gromov hyperbolic spaces / uniform spaces / annular quasiconvexity / Gehring-Hayman inequality

引用本文

导出引用
周青山, 李浏兰, 李希宁. 穿孔度量空间Gromov双曲性的几何特征. 数学学报, 2021, 64(5): 737-746 https://doi.org/10.12386/A2021sxxb0062
Qing Shan ZHOU, Liu Lan LI, Xi Ning LI. Geometric Characterizations of Gromov Hyperbolicity for Punctured Metric Spaces. Acta Mathematica Sinica, Chinese Series, 2021, 64(5): 737-746 https://doi.org/10.12386/A2021sxxb0062

参考文献

[1] Balogh Z. M., Buckley S. M., Geometric characterizations of Gromov hyperbolicity, Invent. Math., 2003, 153:261-301.
[2] Bjorn A., Bjorn J., Shanmugalingam N., Bounded geometry and p-harmonic functions under uniformization and hyperbolization, arXiv:1908.04644, 2019.
[3] Bonk M., Heinonen J., Koskela P., Uniformizing Gromov hyperbolic spaces, Asterisque, 2001, 270:1-99.
[4] Bridson M. R., Haefliger A., Metric Spaces of Non-positive Curvature, Grundlehren der Mathematischen Wissenschaften, Vol. 319, Springer-Verlag, Berlin, 1999.
[5] Buckley S. M., Herron D., Xie X., Metric space inversions, quasihyperbolic distance, and uniform spaces, Indiana Univ. Math. J., 2008, 57:837-890.
[6] Gehring F. W., Osgood B. G., Uniform domains and the quasi-hyperbolic metric, J. Analyse Math., 1979, 36:50-74.
[7] Gehring F. W., Palka B. P., Quasiconformally homogeneous domains, J. Analyse Math., 1976, 30:172-199.
[8] Gromov M., Hyperbolic groups, In:Essays in Group Theory, 75-263, Math. Sci. Res. Inst. Publ., Vol. 8, Springer, New York, 1987.
[9] Herron D., Shanmugalingam N., Xie X., Uniformity from Gromov hyperbolicity, Illinois J. Math., 2008, 52:1065-1109.
[10] Koskela P., Lammi P., Gehring-Hayman Theorem for conformal deformations, Comment Math. Helv., 2013, 88:185-203.
[11] Koskela P., Lammi P., Manojlovi? V., Gromov hyperbolicity and quasihyperbolic geodesics, Ann. Sci. Éc. Norm. Supér, 2014, 47:975-990.
[12] Lammi P., Quasihyperbolic boundary condition:compactness of the inner boundary, Illinois J. Math., 2011, 55:1221-1233.
[13] Väisälä J., Gromov hyperbolic spaces, Expo. Math., 2005, 23:187-231.
[14] Väisälä J., Hyperbolic and uniform domains in Banach spaces, Ann. Acad. Sci. Fenn. Math., 2005, 30:261-302.

基金

国家自然科学基金青年项目(11901090);广东省教育厅项目(2018KQNCX285,2018KTSCX245);湖南省双一流应用特色学科(湘教通2018469)及省重点实验室(智能信息处理与应用2016TP1020);湖南省自然科学基金(2020JJ6038);高校基本科研业务费—青年教师培育项目(20lgpy148)

PDF(469 KB)

655

Accesses

0

Citation

Detail

段落导航
相关文章

/