Bergman—Hartogs域上的Roper—Suffridge延拓算子
The Generalized Roper-Suffridge Operators on Bergman-Hartogs Domains
本文给出多复变数空间中构造具有特殊几何性质的双全纯映照的新方法,讨论了Bergman—Hartogs域上推广的Roper—Suffridge算子的性质,并利用Bergman—Hartogs域的特征及双全纯映照子族的几何性质,证明推广的Roper—Suffridge算子在Bergman—Hartogs域上及在不同的条件下保持强α次殆β型螺形映照、复数λ阶殆星形映照及SΩ*(β,A,B)的几何性质.由此得到简化后的算子具有同样的性质.
New approaches to construct biholomorphic mappings which have special geometric properties in several complex variables are obtained in this paper. The properties of the generalized Roper-Suffridge operators on Bergman-Hartogs domains are mainly discussed. With the characteristics of Bergman-Hartogs domains and the geometric properties of subclasses of biholomorphic mappings, the generalized Roper-Suffridge operators are proved to preserve the properties of strong and almost spirallike mappings of type β and order α, almost starlike mapping of complex order λ, SΩ*(β, A, B) on Bergman-Hartogs domains under different conditions. Sequentially, the same conclusions are obtained for the reduced Roper-Suffridge extension operators.
Roper—Suffridge算子 / 螺形映照 / Bergman—Hartogs域 {{custom_keyword}} /
Roper-Suffridge operator / spirallike mappings / Bergman-Hartogs domains {{custom_keyword}} /
[1] Cai R. H., Liu X. S., The third and fourth coefficient estimations for the subclasses of strongly spirallike functions (in Chinese), Journal of Zhanjiang Normal College, 2010, 31:38-43.
[2] Chuaqui M., Applications of subordination chains to starlike mappings in Cn, Pacif. J. Math., 1995, 168:33-48.
[3] Duren P. L., Univalent Functions, Springer-Verlag, New York, 1983.
[4] Feng S. X., Some classes of holomorphic mappings in several complex variables (in Chinese), University of Science and Technology of China Doctoral Thesis, Hefei, 2004.
[5] Feng S. X., Liu T. S., Ren G. B., The growth and covering theorems for several mappings on the unit ball in complex Banach spaces (in Chinese), Chin. Ann. Math., 2007, 28A(2):215-230.
[6] Gao C. L., The generalized Roper-Suffridge extension operator on a Reinhardt domain (in Chinese), Zhejiang Normal University Master Thesis, Jinhua, 2012.
[7] Gong S., Liu T. S., The generalized Roper-Suffridge extension operator, J. Math. Anal. Appl., 2003, 284:425-434.
[8] Graham I., Hamada H., Kohr G., Suffridge T. J., Extension operators for locally univalent mappings, Michigan Math. J., 2002, 50:37-55.
[9] Graham I., Kohr G., Geometric Function Theory in One and Higher Dimensions, Marcel Dekker, New York, 2003.
[10] Graham I., Kohr G., Univalent mappings associated with the Roper-Suffridge extension operator, J. Analyse Math., 2000, 81:331-342.
[11] Graham I., Kohr G., Kohr M., Loewner chains and Roper-Suffridge extension operator, J. Math. Anal. Appl., 2000, 247:448-465.
[12] Gurganus K. R., φ-like holomorphic functions in Cn and Banach spaces, Trans. Amer. Math. Soc., 1975, 205:389-406.
[13] Koebe P., Über die Uniformisierung beliebiger analylischer kurven. Nachr Akad Wiss Göttingen, Math. Phys. Kl., 1907, 1907:191-210.
[14] Kohr G., Loewner chains and a modification of the Roper-Suffridge extension operator, Mathematica, 2006, 71(1):41-48.
[15] Liu T. S., Ren G. B., Growth theorem of convex mappings on bounded convex circular domains, Science in China, 1998, 41(2):123-130.
[16] Liu T. S., Xu Q. H., Loewner chains associated with the generalized Roper-Suffridge extension operator, J. Math. Anal. Appl., 2006, 322:107-120.
[17] Liu X. S., The properties of some biholomorphic mappings in geometric function theory of several complex variables (in Chinese), University of Science and Technology of China Doctoral Thesis, Hefei, 2006.
[18] Liu X. S., Feng S. X., A remark on the generalized Roper-Suffridge extension operator for spirallike mappings of type β and order α (in Chinese), Chin. Quart. J. of Math., 2009, 24(2):310-316.
[19] Muir J. R., A class of Loewner chain preserving extension operators, J. Math. Anal. Appl., 2008, 337(2):862-879.
[20] Muir J. R., A modification of the Roper-Suffridge extension operator, Comput. Methods Funct. Theory, 2005, 5(1):237-251.
[21] Roper K. A., Suffridge T. J., Convex mappings on the unit ball of Cn, J. Anal. Math., 1995, 65:333-347.
[22] Russo R., On the maximum modulus theorem for the steady-state Navier-Stokes equations in Lipschitz bounded domains, Applicable Analysis, 2011, 90(1):193-200.
[23] Tang Y. Y., Roper-Suffridge operators on Bergman-Hartogs domain (in Chinese), Henan University Master Thesis, Kaifeng, 2016.
[24] Wang J. F., On the growth theorem and the Roper-Suffridge extension operator for a class of starlike mappings in Cn (in Chinese), Chin. Ann. Math., 2013, 34A(2):223-234.
[25] Wang J. F., Liu T. S., A modification of the Roper-Suffridge extension operator for some holomorphic mappings (in Chinese), Chin. Ann. Math., 2010, 31A(4):487-496.
[26] Xu Q. H., The properties and relations of subclasses of biholomorphic mappings in several complex variables (in Chinese), University of Science and Technology of China Doctoral Thesis, Hefei, 2006.
[27] Zhao Y. H., Almost starlike mappings of complex order λ on the unit ball of a complex Banach space (in Chinese), Zhejiang Normal University Master Thesis, Jinhua, 2013.
[28] Zhu Y. C., Liu M. S., The generalized Roper-Suffridge extension operator in Banach spaces (I) (in Chinese), Acta Mathematica Sinica, 2007, 50(1):189-196.
[29] Zhu Y. C., Liu M. S., The generalized Roper-Suffridge extension operator on Reinhardt domain Dp, Taiwanese Jour. of Math., 2010, 14(2):359-372.
国家自然科学基金(11271359,11471098);河南省教育厅科学技术研究重点项目(17A110041,19B110016);周口师范学院科研创新基金项目(ZKNUA201805)
/
〈 | 〉 |