双线性Fourier乘子在变指标Besov空间的有界性

刘茵

数学学报 ›› 2021, Vol. 64 ›› Issue (5) : 865-874.

PDF(416 KB)
PDF(416 KB)
数学学报 ›› 2021, Vol. 64 ›› Issue (5) : 865-874. DOI: 10.12386/A2021sxxb0072
论文

双线性Fourier乘子在变指标Besov空间的有界性

    刘茵
作者信息 +

The Boundedness of Bilinear Fourier Multiplier Operators on Variable Exponent Besov Spaces

    Yin LIU
Author information +
文章历史 +

摘要

利用Fourier变换、逆变换和Littlewood—Paley分解等方法,本文研究了双线性Fourier乘子在变指标Besov空间的有界性.

Abstract

Using Fourier transform, inverse Fourier transform and the Littlewood-Paley decomposition technique, the boundedness of bilinear Fourier multiplier operators on the variable exponent Besov spaces is proved in this paper.

关键词

双线性 Fourier 乘子 / 变指标 / Besov 空间

Key words

bilinear Fourier multiplier operators / variable exponent / Besov spaces

引用本文

导出引用
刘茵. 双线性Fourier乘子在变指标Besov空间的有界性. 数学学报, 2021, 64(5): 865-874 https://doi.org/10.12386/A2021sxxb0072
Yin LIU. The Boundedness of Bilinear Fourier Multiplier Operators on Variable Exponent Besov Spaces. Acta Mathematica Sinica, Chinese Series, 2021, 64(5): 865-874 https://doi.org/10.12386/A2021sxxb0072

参考文献

[1] Acerbi E., Mingione G., Gradient estimates for the p(x)-Laplacean system, J. Reine Angew. Math., 2005, 584:117-148.
[2] Almeida A., António C., Variable Exponent Besov-Morrey Spaces, J. Fourier Anal. Appl., 2020, 26:1-42.
[3] Almeida A., Hästö P., Besov spaces with variable smoothness and integrability, J. Funct. Anal., 2010, 258:1628-1655.
[4] Baroni P., Colombo M., Mingione G., Harnack inequalities for double phase functionals, Nonlinear Anal., 2015, 121:206-222.
[5] Bernicot F., Germain P., Bilinear oscillatory integrals and boundedness for new bilinear multipliers, Adv. Math., 2010, 225:1739-1785.
[6] Besov O. V., Equivalent normings of spaces of functions of variable smoothness, P. Steklov I. Math., 2003, 4:80-88.
[7] Besov O. V., Interpolation, embedding, and extension of spaces of functions of variable smoothness, P. Steklov I. Math., 2005, 1:47-58.
[8] Birnbaum Z., Orlicz W., Über die Verallgemeinerung des Begriffes der zueinander konjugierten Potenzen, Stud. Math., 1931, 3:1-67.
[9] Chen J. C., Fan D. S., Zhao F. Y., Littlewood-Paley functions and Sobolev spaces, Nonlinear Anal., 2019, 184:273-297.
[10] Chen L., Lu G. Z., Luo X., Boundedness of multi-parameter Fourier multiplier operators on Triebel-Lizorkin and Besov-Lipschitz spaces, Nonlinear Anal., 2016, 134:55-69.
[11] Coifman R. R., Meyer Y., On commutators of singular integrals and bilinear singular integrals, Trans. Amer. Math. Soc., 1975, 212:315-331.
[12] Coifman R. R., Meyer Y., Commutateurs d'intégrales singulières et opérateurs multilinéaires, Ann. Inst. Fourier (Grenoble), 1978, 28:177-202.
[13] Cruz-Uribe D. V., Fiorenza A., Variable Lebesgue Spaces, Foundations and Harmonic Analysis, Applied and Numerical Harmonic Analysis, Birkhäuser, Springer, Heidelberg, 2013.
[14] Diening L., Harjulehto P., Hästö P., et al., Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, Vol. 2017, Springer, Heidelberg, 2011.
[15] Grafakos L., Torres R., Discrete decompositions for bilinear operators and almost diagonal conditions, Trans. Amer. Math. Soc., 2002, 354:1153-1176.
[16] Ková?ik O., Rákosník J., On spaces Lp(x) and Wk,p(x), Czechoslovak Math. J., 1991, 41:592-618.
[17] Leopold H. G., On Besov spaces of variable order of differentiation, Z. Anal. Anwend., 1989, 8:69-82.
[18] Leopold H. G., Embedding of function spaces of variable order of differentiation in function spaces of variable order of integration, Czech. Math. J., 1999, 49:633-644.
[19] Liu Y., Hu G. E., Zhao J. M., The boundedness of bilinear Fourier multiplier operators on Triebel-Lizorkin and Besov spaces, Acta Math. Sin. Chinese Series, 2017, 60:369-382.
[20] Liu Y., Zhao J. M., Abstract Hardy spaces with variable exponents, Nonlinear Anal., 2018, 167:29-50.
[21] Liu Y., Zhao J. M., Bilinear Fourier multiplier operators on Variable Exponent Triebel-Lizorkin spaces, Math. Inequal. Appl., 2019, 22:677-690.
[22] Luxemburg W., Banach Function Spaces, Thesis, Technische Hogeschool te Delft, 1955.
[23] Naibo V., On the bilinear Hörmander classes in the scales of Triebel-Lizorkin and Besov spaces, J. Fourier Anal. Appl., 2015, 21:1077-1104.
[24] Nakai E., Sawano Y., Hardy spaces with variable exponents and generalized Campanato spaces, J. Funct. Anal., 2012, 262:3665-3748.
[25] Nakano H., Modulared Semi-ordered Linear Spaces, Maruzen Co., Ltd., Tokyo, 1950.
[26] Nakano H., Topology of Linear Topological Spaces, Maruzen Co., Ltd., Tokyo, 1951.
[27] Noi T., Fourier multiplier theorems for Besov and Triebel-Lizorkin spaces with variable exponents, Math. Inequal. Appl., 2014, 17:49-74.
[28] Noi T., Trace and extension operators for Besov spaces and Triebel-Lizorkin spaces with variable exponents, Rev. Mat. Complut., 2016, 29:341-404.
[29] Triebel H., Theory of Function Spaces, Birkhäuser Verlag, Basel, 1983.
[30] Xu J. S., Variable Besov and Triebel-Lizorkin spaces, Ann. Acad. Sci. Fenn.-Math., 2008, 33:511-522.
[31] Xu J. S., The relation between variable Bessel potential spaces and Triebel-Lizorkin spaces, Integr. Transf. Spec. F., 2008, 19:599-605.
[32] Yang D. C., Zhuo C. Q., Yuan W., Besov-type spaces with variable smoothness and integrability, J. Funct. Anal., 2015, 269:1840-1898.
[33] Yuan W., Sickel W., Yang D. C., Morrey and Campanato Meet Besov, Lizorkin and Triebel, Lecture Notes in Mathematics, Vol. 2005, Springer-Verlag, Berlin, 2010.

基金

河南省自然科学基金资助项目(202300410300);南阳师范学院博士基金项目(2019ZX034)

PDF(416 KB)

Accesses

Citation

Detail

段落导航
相关文章

/