锥b-度量空间中的三元重合点与三元不动点定理

罗婷, 朱传喜

数学学报 ›› 2021, Vol. 64 ›› Issue (6) : 1043-1054.

PDF(379 KB)
PDF(379 KB)
数学学报 ›› 2021, Vol. 64 ›› Issue (6) : 1043-1054. DOI: 10.12386/A2021sxxb0087
论文

锥b-度量空间中的三元重合点与三元不动点定理

    罗婷1, 朱传喜2
作者信息 +

Tripled Coincidence Point and Tripled Fixed Point Theorems in cone b-metric Spaces

    Ting LUO1, Chuan Xi ZHU2
Author information +
文章历史 +

摘要

本文在锥b-度量空间中引进了映射对FX×X×XXgXX的三元重合点与弱相容性的新概念.在锥不需要正规性的条件下,研究了压缩映射对的三元重合点与具有弱相容性映射对的三元公共不动点问题,所得结果推广了已有文献中的二元重合点与二元公共不动点定理.最后给出主要结果的一个应用.

Abstract

In this paper, the new concept of tripled coincidence point and weakly compatible for a pair of mappings F:X×X×XX, g:XX in cone bmetric spaces are introduced. Under not necessary normal conditions of cone, some tripled coincidence for contractive mappings and tripled common fixed point problems of weakly compatible mappings are studied. The obtained results generalize some coupled common fixed point theorems in corresponding literatures. Finally, an example is given to illustrate our main results.

关键词

锥b-度量空间 / 三元重合点 / 三元不动点 / 半序集 / 弱相容映射

Key words

cone b-metric space / tripled coincidence point / tripled fixed point / partially ordered set / weakly compatible mapping

引用本文

导出引用
罗婷, 朱传喜. 锥b-度量空间中的三元重合点与三元不动点定理. 数学学报, 2021, 64(6): 1043-1054 https://doi.org/10.12386/A2021sxxb0087
Ting LUO, Chuan Xi ZHU. Tripled Coincidence Point and Tripled Fixed Point Theorems in cone b-metric Spaces. Acta Mathematica Sinica, Chinese Series, 2021, 64(6): 1043-1054 https://doi.org/10.12386/A2021sxxb0087

参考文献

[1] Abbs M., Jungck G., Common fixed point results for noncommuting mappings without continuity in cone metric spaces, J. Math. Anal. Appl., 2008, 341(1):416-420.
[2] Bakhtin I. A., The contraction mapping principle in quasimetric spaces, In:Functional Analysis, Gos. Ped. Inst., UI'yanovsk, 1989, 26-37.
[3] Boriceanu M., Bota M., Petrusel A., Mutivalued fractals in b-metric spaces, Cent. Eur. J. Math., 2010, 8(2):367-377.
[4] Bota M., Molnar A., Varga C., On Ekeland's variational principle in b-metric spaces, Fixed Point Theory, 2011, 12(2):21-28.
[5] Czerwik S., Nonlinear set-valued contraction mappings in b-metric spaces, Atti Semin. Mat. Fis. Univ. Modena, 1998, 46(2):263-276.
[6] Fadail Z. M., Bin Ahmad A. G., Coupled coincidence point and common coupled fixed point results in cone b-metric spaces, Fixed Point Theory Appl., 2013, 2013:177, 14 pp.
[7] Huang H. P., Xu S. Y., Fixed point theorems of contractive mappings in cone b-metric spaces and applications, Fixed Point Theory Appl., 2013, 2013, 112, 10 pp.
[8] Huang L. G., Zhang X., Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 2007, 332(2):1468-1476.
[9] Hussain N., Shah M. H., KKM mappings in cone b-metric spaces, Comput. Math. Appl., 2011, 62(4):1677-1684.
[10] Jungck G., Radojevi? S., Rakocevic V., et al., Common fixed points for weakly compatible pairs on cone metric spaces, Fixed Point Theory Appl., 2009, 2009, Art. ID 643840, 13 pp.
[11] Khamsi M. A., Hussain N., KKM mappings in metric type spaces, Nonlinear Anal., 2010, 73(9):3123-3129.
[12] Shah M. H., Simic S., Hussain N., et al., Common fixed points for occasionally weakly compatible pairs on cone metric type spaces, J. Cmput. Anal. Appl., 2012, 14(2):290-297.
[13] Shi L., Xu S. Y., Common fixed point theorems for two weakly compatible self-mappings in cone b-metric spaces, Fixed Point Theory Appl., 2013, 120(1):11 pp.
[14] Song G. X., Sun X. Y., Zhao Y., et al., New common fixed point theorems for maps on cone metric spaces, Appl. Math. Lett., 2010, 23(9):1033-1037.
[15] Stanic M. P., Cvetkovi? A. S., Simi? S., et al., Common fixed point under contractive condition of Ciric's type on cone metric type spaces, Fixed Point Theory Appl., 2012, 2012:35, 7 pp.
[16] Zhu C. X., Research on some problems for nonlinear operators, Nonlinear Anal., 2009, 71(10):4568-4571.
[17] Zhu C. X., Xu Z. B., Inequalities and solution of an operator equation, Appl. Math. Lett., 2008, 21(6):607-611.

基金

国家自然科学基金(12001249,11771198,11361042);江西省教育厅科学技术研究项目(GJJ190280)

PDF(379 KB)

393

Accesses

0

Citation

Detail

段落导航
相关文章

/