可积的两分量Camassa-Holm方程组的尖峰孤子解及爆破现象
Peakons and Blow-up Phenomena for an Integrable Two-component Camassa-Holm System
本文讨论了一个可积的两分量Camassa-Holm方程组的周期柯西问题,该模型可看作是修正Camassa-Holm方程的两分量推广.首先给出了显式的周期尖峰孤子解.其次,建立了强解的爆破准则以及强解爆破时初值满足的几个条件.
In this paper, we consider the periodic Cauchy problem of an integrable two-component Camassa-Holm system, which can be regarded as a two-component extension of the modified Camassa-Holm equation. First, the periodic peakons are obtained in explicit formulas. Then the precise blow-up scenarios of strong solutions and several conditions on the initial data that produce blow-up of the induced solutions are described in detail.
两分量Camassa-Holm方程组 / 周期尖峰孤子解 / 爆破 {{custom_keyword}} /
two-component Camassa-Holm system / periodic peakons / blow-up {{custom_keyword}} /
[1] Camassa R., Holm D. D., An integrable shallow water equation with peaked solitons, Physical Review Letters, 1993, 71(11):1661-1664.
[2] Chang X. K., Hu X. B., Szmigielski J., Multipeakons of a two-component modified Camassa-Holm equation and the relation with the finite Kac-van Moerbeke lattice, Adv. Math., 2016, 299:1-35.
[3] Chou K. S., Qu C. Z., Integrable equations arising from motions of plane curves I, Physica D, 2002, 162(1-2):9-33.
[4] Constantin A., Escher J., Well-posedness, global existence and blow-up phenomena for a periodic quasi-linear hyperbolic equation, Communications in Pure and Applied Mathematics, 1998, 51(5):475-504.
[5] Constantin A., Escher J., Wave breaking for nonlinear nonlocal shallow water equations, Acta Mathematica, 1998, 181(2):229-243.
[6] Constantin A., Kolev H., Geodesic flow on the diffeomorphism group of the circle, Comment. Math. Helv., 2003, 78:787-804.
[7] Constantin A., McKean H. P., A shallow water equation on the circle, Communications in Pure and Applied Mathematics, 1999, 52(8):949-982.
[8] Constantin A., Escher J., On the blow-up rate and the blow-up set of breaking waves for a shallow water equation, Mathematische Zeitschrift, 2000, 233(1):75-91.
[9] Constantin A., Strauss W. A., Stability of peakons, Comm. Pure Appl. Math., 2000, 53:603-610.
[10] Constantin A., Strauss W. A., Stability of a class of solitary waves in compressible elastic rods, Phys. Lett. A, 2000, 270:140-148.
[11] Danchin R., A few remarks on the Camassa-Holm equation, Differ. Integral Equ., 2001, 14(8):953-988.
[12] Dai H., Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod, Acta Mech., 1998, 127:193-207.
[13] Fu Y., Gui G. L., Liu Y., et al., On the Cauchy problem for the integrable modified Camassa-Holm equation with cubic nonlinearity, J. Differential Equations, 2013, 255:1905-1938.
[14] Fuchssteiner B., Some tricks from the symmetry-toolbox for nonlinear equations:generalizations of the Camassa-Holm equation, Physica D, 1996, 95:229-243.
[15] Fuchssteiner B., Fokas A. S., Symplectic structures, their Bäcklund transformations and hereditary symmetries, Physica D, 1981/1982, 4(1):47-66.
[16] Gui G. L., Liu Y., Olver P. J., et al., Wave-breaking and peakons for a modified Camassa-Holm equation, Comm. Math. Phys., 2013, 319:731-759.
[17] Johnson R. S., Camassa-Holm, Korteweg-de Vries and related models for water waves, J. Fluid. Mech., 2002, 455:63-82.
[18] Khesin B., Misio lek G., Euler equations on homogeneous spaces and Virasoro orbits, Advances in Mathematics, 2003, 176(1):116-144.
[19] Kouranbaeva S., The Camassa-Holm equation as a geodesic flow on the diffeomorphism group, Journal of Mathematical Physics, 1999, 40(2):857-868.
[20] Lenells J., Stability of periodic peakons, Int. Math. Res. Not., 2004, 10:485-499.
[21] Lenells J., A variational approach to the stability of periodic peakons, J. Nonl. Math. Phys., 2004, 11:151-163.
[22] Li X. T., The Cauchy problem and blow-up phenomena of a new integrable two-component Camassa-Holm system, Nonlinear Anal., 2016, 132:25-46.
[23] Liu Y., Qu C. Z., Zhang Y., Stability of periodic peakons for the modified μ-Camassa-Holm equation, Physica D, 2013, 250:66-74.
[24] Mi Y. S., Mu C. L., Well-posedness and analyticity for an integrable two-component system with cubic nonlinearity, J. Hyperbolic Differ. Equ., 2013, 10(04):703-723.
[25] Misio lek G., A shallow water equation as a geodesic flow on the Bott-Virasoro group, Journal of Geometry and Physics, 1998, 24(3):203-208.
[26] Olver P. J., Rosenau P., Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support, Phys. Rev. E, 1996, 53:1900-1906.
[27] Qiao Z. J., A new integrable equation with cuspons and W/M-shape-peaks solitons, J. Math. Phys., 2006, 47:112701.
[28] Qu C. Z., Fu Y., Liu Y., Well-posedness, wave breaking and peakons for a modified μ-Camassa-Holm equation, Journal of Functional Analysis, 2014, 266:433-477.
[29] Qu C. Z., Liu X. C., Liu Y., Stability of peakons for an integrable modified Camassa-Holm equation, Comm. Math. Phys., 2013, 322:967-997.
[30] Song J. F., Qu C. Z., Qiao Z. J., A new integrable two-component system with cubic nonlinearity, J. Math. Phys., 2011, 52:013503.
[31] Tian K., Liu Q. P., Tri-Hamiltonian duality between the Wadati-Konno-Ichikawa hierarchy and the Song-Qu-Qiao hierarchy, J. Math. Phys., 2013, 54(4):043513.
[32] Yan K., Qiao Z. J., Zhang Y. F, Blow-up phenomena for an integrable two-component Camassa-Holm system with cubic nonlinearity and peakon solutions, J. Differential Equations, 2015, 259:6644-6671.
[33] Zhu M., Zhang S. H., On the blow-up of solutions to the periodic modified integrable Camassa-Holm equation, Discrete and Continuous Dynamical Systems, 2016, 36:2347-2364.
国家自然科学基金资助项目(11561059);天水师范学院“青蓝”人才工程基金资助项目
/
〈 | 〉 |