具Ⅱ型Holling功能性反应强耦合椭圆系统的共存问题

周玲;

数学学报 ›› 2006, Vol. 49 ›› Issue (4) : 827-834.

数学学报 ›› 2006, Vol. 49 ›› Issue (4) : 827-834. DOI: 10.12386/A2006sxxb0102
论文

具Ⅱ型Holling功能性反应强耦合椭圆系统的共存问题

    周玲;
作者信息 +

Coexistence of a Strongly Coupled Elliptic System with Holling TypeⅡFunctional Response

    Ling ZHOU
Author information +
文章历史 +

摘要

本文研究带齐次Dirichlet边界条件的强耦合椭圆系统,首先证明了当食饵和捕食者的扩散率足够大,或者出生率足够小时,系统不存在共存现象,并给出半平凡解存在的充分条件.然后利用Schauder不动点定理,得到强耦合的椭圆问题至少有一个正解存在的充分条件.该条件说明只要捕食者的内部竞争强,物种的交叉扩散相对弱,或者捕获率足够小,物种的交叉扩散相对弱,强耦合系统就至少有一个正解存在.

Abstract

strongly coupled elliptic system with homogeneous Dirichlet boundary conditions is considered. It is shown that there is no coexistence state if diffusion rates are strong, or if the intrinsic growth rates are slow. Making use of the Schauder fixed point theory, we derive some sufficient conditions to have a coexistence state for the strongly coupled elliptic problem. Moreover, our results reveal that this problem possesses at least one coexistence state if the intra-specific competition of predator is strong and cross-diffusions are relatively weak, or if the capturing rate is slow and cross-diffusions are relatively weak.

关键词

交叉扩散 / 强耦合椭圆系统 / 自扩散

引用本文

导出引用
周玲;. 具Ⅱ型Holling功能性反应强耦合椭圆系统的共存问题. 数学学报, 2006, 49(4): 827-834 https://doi.org/10.12386/A2006sxxb0102
Ling ZHOU. Coexistence of a Strongly Coupled Elliptic System with Holling TypeⅡFunctional Response. Acta Mathematica Sinica, Chinese Series, 2006, 49(4): 827-834 https://doi.org/10.12386/A2006sxxb0102

274

Accesses

0

Citation

Detail

段落导航
相关文章

/