非线性Klein-Gordon方程整体解存在的最佳条件

甘在会;张健

数学学报 ›› 2005, Vol. 48 ›› Issue (2) : 311-318.

PDF(407 KB)
PDF(407 KB)
数学学报 ›› 2005, Vol. 48 ›› Issue (2) : 311-318. DOI: 10.12386/A2005sxxb0037
论文

非线性Klein-Gordon方程整体解存在的最佳条件

    甘在会;张健
作者信息 +

Sharp Conditions of Global Existence for Nonlinear Klein-Gordon Equations

    Zai Hui GAN, Jian ZHANG
Author information +
文章历史 +

摘要

本文研究一类带竞争势函数的非线性Klein-Gordon方程的柯西问题.根据基 态的特征,运用势井方法和凹方法导出了该问题解爆破和整体存在的最佳条件. 同时 还回答了当初值为多小时,整体解存在这个问题.

Abstract

This paper is concerned with the Cauchy problem for a class of nonlinear Klein-Gordon equations with several competing potential functions. In terms of the characteristics of the ground state, the sharp conditions for blowing up and global existence are derived out by applying the potential well argument and the concavity method. And the question that how small the initial data are, the global solutions exist is answered.

关键词

最佳条件 / 非线性Klein-Gordon方程 / 整体解

引用本文

导出引用
甘在会;张健. 非线性Klein-Gordon方程整体解存在的最佳条件. 数学学报, 2005, 48(2): 311-318 https://doi.org/10.12386/A2005sxxb0037
Zai Hui GAN, Jian ZHANG. Sharp Conditions of Global Existence for Nonlinear Klein-Gordon Equations. Acta Mathematica Sinica, Chinese Series, 2005, 48(2): 311-318 https://doi.org/10.12386/A2005sxxb0037
PDF(407 KB)

291

Accesses

0

Citation

Detail

段落导航
相关文章

/