单峰扩张映射的捏制序列

曾凡平

数学学报 ›› 1998, Vol. 41 ›› Issue (3)

PDF(450 KB)
PDF(450 KB)
数学学报 ›› 1998, Vol. 41 ›› Issue (3) DOI: 10.12386/A1998sxxb0099
论文

单峰扩张映射的捏制序列

    曾凡平
作者信息 +

Kneading Sequences for Unimodal Expanding Maps of the Interval

    FanPing Zeng
Author information +
文章历史 +

摘要

设P及AC均是准素序列并满足min{P,AC}RLR∞,ρ(P)及ρ(AC)分别是P及AC的特征值.设f∈C0(I,I)是个单峰扩张映射并具有扩张常数λ,m是个非负整数.本文证明了若λ(ρ(P))1/2m,则f的捏制序列K(f)(RC)mP;若λ>(ρ(AC))1/2m,则对任极大序列E,K(f)>(RC)mACE.(ρ(P))1/2m及(ρ(AC))1/2m均是下述意义下的最佳值,即若其中任一个被较小的值代替,则相应的结论便不成立.

Abstract

Let P and AC be two primary sequences with  min {P,AC}RLR ∞, ρ(P) and ρ(AC) be the eigenvalues of P and AC, respectively. Let f∈C 0(I,I) be a unimodal expanding map with expanding constant λ and m be a nonegative integer. It is proved that f has the kneading sequence K(f)(RC) *m *P if λ(ρ(P)) 1/2 m , and K(f)>(RC) *m * AC*E for any shift maximal sequence E if λ>(ρ(AC)) 1/2 m .The value of (ρ(P)) 1/2 m  or (ρ(AC)) 1/2 m  is the best possible in the sense that the related conclusion may not be true if it is replaced by any smaller one.

关键词

捏制序列 / 周期点 / 拓扑熵

引用本文

导出引用
曾凡平. 单峰扩张映射的捏制序列. 数学学报, 1998, 41(3) https://doi.org/10.12386/A1998sxxb0099
FanPing Zeng. Kneading Sequences for Unimodal Expanding Maps of the Interval. Acta Mathematica Sinica, Chinese Series, 1998, 41(3) https://doi.org/10.12386/A1998sxxb0099
PDF(450 KB)

265

Accesses

0

Citation

Detail

段落导航
相关文章

/