Fay-Herriot模型中两步估计的均方误差矩阵

叶仁道;王松桂;

数学学报 ›› 2009 ›› Issue (02) : 109-116.

数学学报 ›› 2009 ›› Issue (02) : 109-116. DOI: 10.12386/A2009sxxb0037
无栏目

Fay-Herriot模型中两步估计的均方误差矩阵

    叶仁道;王松桂;
作者信息 +

Mean Squared Error Matrix of Two-Stage Estimete in Fay-Herriot Model

    Ren Dao YE College of Business,Hangzhou Dianzi University,Hangzhou 310018,P.R.China Song Gui WANG College of Applied Sciences,Beijing University of Technology,Beijing 100124,P.R.China
Author information +
文章历史 +

摘要

在文献中,回归系数的两步估计是通过在最佳线性无偏估计中用方差参数的估计量取代方差参数来获得的.本文考虑了Fay-Herriot模型中两步估计的均方误差矩阵问题.当方差分量倒数的估计量是基于普通最小二乘残差时,建立了两步估计的均方误差矩阵和估计量偏差之间的直接关系.此外,给出了两步估计的均方误差矩阵的界.最后,把上面的结果推广到估计量不是基于普通最小二乘残差的一般条件下.

Abstract

In the literature,a two-stage estimate of regression coefficients is obtained by replacing the variance parameters with their estimators in the best linear unbiased estimator.In this paper,we consider the problem of mean squared error matrix of two-stage estimate in Fay-Herriot model.When the estimator for the reciprocal of variance component is based on the ordinary least square residual,we set up the direct relationship between the mean squared error matrix of two-stage estimate and bias of estimator.In addition,a bound for the mean squared error matrix of two-stage estimate is given.Finally,the above results are extended under the general conditions where the estimator may be not based on the ordinary least square residual.

关键词

Fay-Herriot模型 / 两步估计 / 均方误差矩阵

Key words

two-stage estimate / Fay-Herriot model / mean squared error matrix

引用本文

导出引用
叶仁道;王松桂;. Fay-Herriot模型中两步估计的均方误差矩阵. 数学学报, 2009(02): 109-116 https://doi.org/10.12386/A2009sxxb0037
Ren Dao YE College of Business,Hangzhou Dianzi University,Hangzhou 310018,P.R.China Song Gui WANG College of Applied Sciences,Beijing University of Technology,Beijing 100124,P.R.China. Mean Squared Error Matrix of Two-Stage Estimete in Fay-Herriot Model. Acta Mathematica Sinica, Chinese Series, 2009(02): 109-116 https://doi.org/10.12386/A2009sxxb0037

183

Accesses

0

Citation

Detail

段落导航
相关文章

/