广义超弹性杆方程解的爆破
The Blow-up of Solution for Generalized Hyperelastic-rod Equation
解的爆破 / 广义超弹性杆方程 / 解的局部存在性 {{custom_keyword}} /
blow-up of solution / generalized hyperelastic-rod equation / local existence of solution {{custom_keyword}} /
[1] Constantin A., Escher J., Global existence and blow-up for a shallow water equation, Ann. Scuola. Norm., SUP Pisacl Sci., 1998, 26(4): 303--328.
[2] Vukadinovic J., On the backwards behavior of the solutions of the 2D periodic viscousCamassa--Holm equation, Journal of Dynamics and Differential Equations, 2002, 14(1): 37--62.
[3] Ding D. P., Tian L. X., Xu G., The study on solutions to Camassa--Holm equation, Commu. Pure Appl. Anal., 2006, 5(3): 483--492.
[4] Constantin A., On the Cauchy problem for the periodic Camassa--Holm equation, J. Differential Equations, 1997, 141(2): 218--235.
[5] Constantin A., Mocinet L., Global weak solutions for a shallow water equation, Commun. Math. Phys., 2000, 211(1): 45--61.
[6] Helge H., Xavier R., Global conservative solutions of the generalized hyperelastic-rod wave equation, J. Differential Equations, 2007, 233(2): 448--484.
[7] Constantin A., Escher J., Wave breaking for nonlinear shallow water equations, Acta Math., 1998, 181(2): 229--243.
[8] Liu H. L., Eitan T., Critical thresholds in a convolution model for nonlinear conservation laws, SIAM J. Math. Anal., 2001, 33(4): 930--945.
[9] Schochet S., Tadmor E., Regularized Chapman-Enskog expansion for scalar conservation laws, Arch Rational Mech. Anal., 1992, 119(2): 95--107. indent=6mm
[10] Dai H. H., Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod, Acta Mech., 1998, 127(1): 193--207.
[11] Coclte G. M., Holden H., Karlsen K. H., Global weak solutions to a generalized hyperelastic-rod wave equation, SIMA, 2005, 37(4): 1044--1069.
国家自然科学基金资助项目(10771088);江苏省自然科学基金资助项目(BK2007098);江苏大学高级人才专项基金资助项目(07JDG024)
/
〈 | 〉 |