广义超弹性杆方程解的爆破

丁丹平, 石敏, 毕云蕊

数学学报 ›› 2009, Vol. 52 ›› Issue (6) : 1111-1118.

PDF(421 KB)
PDF(421 KB)
数学学报 ›› 2009, Vol. 52 ›› Issue (6) : 1111-1118. DOI: 10.12386/A2009sxxb0139
论文

广义超弹性杆方程解的爆破

    丁丹平, 石敏, 毕云蕊
作者信息 +

The Blow-up of Solution for Generalized Hyperelastic-rod Equation

    Dan Ping DING Min SHIYun Rui BI
Author information +
文章历史 +

摘要

本文主要研究广义超弹性杆方程解的Cauchy问题及解的爆破条件, 解在有限时间内爆破的条件取决于:最小的 初始速度的梯度的变化范围以及初始值和广义函数G(μ)的最大变分.

 

Abstract

We will study the condition of blow-up for the generalized hyperelastic-rod equation. The solution blowing up in finite time lies in the scope of minimal initial velocity and the maximal variation of intial date and generalized functional G(μ).

 

关键词

解的爆破 / 广义超弹性杆方程 / 解的局部存在性

Key words

blow-up of solution / generalized hyperelastic-rod equation / local existence of solution

引用本文

导出引用
丁丹平, 石敏, 毕云蕊. 广义超弹性杆方程解的爆破. 数学学报, 2009, 52(6): 1111-1118 https://doi.org/10.12386/A2009sxxb0139
Dan Ping DING Min SHIYun Rui BI. The Blow-up of Solution for Generalized Hyperelastic-rod Equation. Acta Mathematica Sinica, Chinese Series, 2009, 52(6): 1111-1118 https://doi.org/10.12386/A2009sxxb0139

参考文献


[1] Constantin A., Escher J., Global existence and blow-up for a shallow water equation, Ann. Scuola. Norm., SUP Pisacl Sci., 1998, 26(4): 303--328.

[2] Vukadinovic J., On the backwards behavior of the solutions of the 2D periodic viscousCamassa--Holm equation,  Journal of Dynamics and Differential Equations, 2002,  14(1): 37--62.

[3] Ding D. P., Tian L. X., Xu G., The study on solutions to Camassa--Holm equation, Commu. Pure Appl. Anal., 2006, 5(3): 483--492.

[4] Constantin A., On the Cauchy problem for the periodic Camassa--Holm equation, J. Differential Equations, 1997, 141(2): 218--235.

[5] Constantin A., Mocinet L., Global weak solutions for a shallow water equation, Commun. Math. Phys., 2000,  211(1): 45--61.

[6] Helge H., Xavier R., Global conservative solutions of the generalized hyperelastic-rod wave equation, J. Differential Equations, 2007, 233(2): 448--484.

[7] Constantin A., Escher J., Wave breaking for nonlinear shallow water equations, Acta Math., 1998, 181(2): 229--243.

[8] Liu H. L., Eitan T., Critical thresholds in a convolution model for nonlinear conservation laws, SIAM J. Math. Anal., 2001, 33(4): 930--945.

[9] Schochet S., Tadmor E., Regularized Chapman-Enskog expansion for scalar conservation laws, Arch Rational Mech. Anal., 1992, 119(2): 95--107. indent=6mm

[10] Dai H. H., Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod, Acta Mech., 1998, 127(1): 193--207.

[11] Coclte G. M., Holden H., Karlsen K. H., Global weak solutions to a generalized hyperelastic-rod wave equation,  SIMA, 2005, 37(4): 1044--1069.

基金

国家自然科学基金资助项目(10771088);江苏省自然科学基金资助项目(BK2007098);江苏大学高级人才专项基金资助项目(07JDG024)

PDF(421 KB)

Accesses

Citation

Detail

段落导航
相关文章

/