推广的Mõbius反转公式

郗平, 易媛

数学学报 ›› 2009, Vol. 52 ›› Issue (6) : 1135-1140.

PDF(523 KB)
PDF(523 KB)
数学学报 ›› 2009, Vol. 52 ›› Issue (6) : 1135-1140. DOI: 10.12386/A2009sxxb0141
论文

推广的Mõbius反转公式

    郗 平, 易 媛
作者信息 +

On Generalized Mõbius Inversion Formulae

    Ping XI, Yuan YI
Author information +
文章历史 +

摘要

讨论了正整数集上 的更一般形式的Mõbius变换, 给出了一组对偶的推广形式的Mõbius反转公式, 并在此基础上获得了关于k次除数函数以及中心二项式系数的Mõbius 变换的一些性质. 另外还对一个已有的结果, 即本文定理的一个特殊情形给出了一个简化的直接证明.  

Abstract

In this paper,    a general Mõbius transform on  is discussed, and a pair of dual Mõbius inversion formulae are given, based on which some properties of the Mõbius transforms involving the k-th order divisor function and central binomial coefficients are obtained. A directly simplified proof of a known result, as a special case of our theorem, is also given.  

关键词

Mõbius反转公式 / k次除数函数 / 中心二项式系数

Key words

Mõbius inversion formula / k-th order divisor function / central binomial coefficient

引用本文

导出引用
郗平, 易媛. 推广的Mõbius反转公式. 数学学报, 2009, 52(6): 1135-1140 https://doi.org/10.12386/A2009sxxb0141
Ping XI, Yuan YI. On Generalized Mõbius Inversion Formulae. Acta Mathematica Sinica, Chinese Series, 2009, 52(6): 1135-1140 https://doi.org/10.12386/A2009sxxb0141

参考文献



[1] Apostol T. M., Introduction to Analytic Number Theory, New York: Springer-Verlag, 1976.



[2] Bazant M., Mõbius, Chebyshev and Cesáro on series inversion (course notes), http://www-math.mit.edu/ bazant/teach/IAP99-mobius/mobius-1832.ps.



[3] Ireland K., Rosen M., A Classical Introduction to Modern Number Theory (2nd Edition), New York: Springer-Verlag, 1990.



[4] Chen N. X., Modified Mõbius inverse formula and its applications in physics, Phys. Rev. Lett., 1990, 64: 1193--1195.



[5] Li B. Z., A further generalization of the modified Mõbius inversion formula, Chinese Sci. Bull., 1992, 37: 1220--1223.



[6] Ren S. Y., New Mõbius inversion formulas, Phys. Lett. A, 1992, 164(1): 1--5.



[7] Chen N. X., The Mõbius function on a unique factorization domain and application in an inverse cohesion problem, Chinese Sci. Bull., 1994, 39: 628--631.



[8] Benito M., Navas L. M., Varona L., Mõbius inversion formulas for flows of arithmetic semigroups, Journal of Number Theory, 2008, 128, 390--412.



[9] Pan C. D., Pan C. B., Fundamental of Analytic Number Theory, Beijing: Science Press, 1999 (in Chinese). indent=6mm



[10] Riordan J., Combinatorial Identities, New York: Wiley, 1968.



[11] Liu H. N., On a generation of the Mõbius inverse formula, J. Sys. Sci. And Math. Sci., 2004, 24(1): 51--55 (in Chinese).

基金

国家自然科学基金资助项目(10601039)

PDF(523 KB)

Accesses

Citation

Detail

段落导航
相关文章

/