具迷向S-曲率的Randers度量

杨国俊

数学学报 ›› 2009, Vol. 52 ›› Issue (6) : 1147-1156.

PDF(440 KB)
PDF(440 KB)
数学学报 ›› 2009, Vol. 52 ›› Issue (6) : 1147-1156. DOI: 10.12386/A2009sxxb0143
论文

具迷向S-曲率的Randers度量

    杨国俊
作者信息 +

On Randers Metrics of Isotropic S-Curvature

    Guo Jun YANG
Author information +
文章历史 +

摘要

利用航海问题给出了一类具迷向S-曲率的Randers度量的分类, 该类包含了所有具迷向S-曲率与标量旗曲率的Randers度量. 特别地, 给出了具迷向S-曲率的二维Randers度量的完全分类. 此外, 我们首次构造了若干具常数 S-曲率及其它曲率性质的Randers度量.

 

Abstract

We classify a class of Randers metrics of isotropic S-curvature by navigation problem. This class includes all Randers metrics of isotropic S-curvature and scalar flag curvature. In particular, all 2-dimensional Randers metrics of isotropic S-curvature are classified. Besides, we construct for the first time many Randers metrics of constant S-curvature with other special curvature properties.

 

关键词

Randers度量 / 旗曲率 / S-曲率

Key words

Randers metrics / flag curvature / S-curvature

引用本文

导出引用
杨国俊. 具迷向S-曲率的Randers度量. 数学学报, 2009, 52(6): 1147-1156 https://doi.org/10.12386/A2009sxxb0143
Guo Jun YANG. On Randers Metrics of Isotropic S-Curvature. Acta Mathematica Sinica, Chinese Series, 2009, 52(6): 1147-1156 https://doi.org/10.12386/A2009sxxb0143

参考文献


[1] Shen Z., Volume compsrison and its applications in Riemann-Finsler geometry, Adv. in Math., 1997, 128: 306--328.

[2] Cheng X., Mo X., Shen Z., On the flag curvature of Finsler metrics of scalar curvature, J. London. Math. Soc., 2003, 68(2): 762--780.

[3] Shen Z., Differential geometry of spray and Finsler spaces, Kluwer Academic Publishers, Dordrecht, 2001.

[4] Shen Z., Landsberg Curvature, S-Curvature and Riemann Curvature, In: A Sampler of Riemann-Finlser Geometry, MSRI Publications, Vol.50, Cambridge Univ. Press, 2004.

[5] Shen Z., Finsler metrics with K=0 and \bf S=0, Canad. J. Math., 2003, 55(1): 112--132.

[6] Cheng X., Shen, Z., Randers metrics with special curvature properties, Osaka J. Math., 2003, 40: 87--101.

[7] Xing H., The geometric meaning of Randers metrics with isotropic S-curvature, Adv. Math (China), accepted.

[8] Bao D., Robles C., Shen Z., Zermelo navigation on Riemannian manifolds, J. Diff. Geom., 2004, 66: 391--449.

[9] Cheng X., Shen Z., Randers metrics of sclalar flag curvature, to appear. indent=6mm

[10] Shen Z., Xing H., On Randers metrics of isotropic \bf S-curvature, Acta Mathematica Sinica, English Series, 2008, 24(5): 789--796.

[11] Shen Y., General solutions of some differential equations on Riemannian manifolds, J. of Math. Res. Exp., 1982, 2: 55--60 (in Chinese).

[12] Mo X., Yang C., The explicit construction of Finsler metrics with special curvature properties, Diff. Geom. and its Appli., 2006, 24(2): 119--129.

[13] Shen Z., Projectively flat Randers metrics with constant flag curvature, Math. Ann., 2003, 325: 19--30.

PDF(440 KB)

269

Accesses

0

Citation

Detail

段落导航
相关文章

/