格点系统存在指数吸引子的充分条件及应用

赵才地, 周盛凡

数学学报 ›› 2010, Vol. 53 ›› Issue (2) : 233-242.

PDF(516 KB)
PDF(516 KB)
数学学报 ›› 2010, Vol. 53 ›› Issue (2) : 233-242. DOI: 10.12386/A2010sxxb0029
论文

格点系统存在指数吸引子的充分条件及应用

    赵才地1,2, 周盛凡3
作者信息 +

Sufficient Conditions for the Existence of Exponential Attractors for Lattice Systems and Applications

    Cai Di ZHAO1,2, Sheng Fan ZHOU3
Author information +
文章历史 +

摘要

本文给出了一般格点动力系统存在指数吸引子的充分条件, 然后将 得到的结果应用到下面的格点非线性Schrödinger方程: γ, κ,δ,σgm 满足适当的条件,证明了该格点方程存在指数吸引子.  

Abstract

We first recast some sufficient conditions for the existence of exponential attractors for general lattice dynamical systems. Then we apply the result to the following nonlinear Schrödinger equations on infinite lattices: Under some conditions on γ, κ,δ,σ and gm, the existence of exponential attractors is established.  

关键词

指数吸引子 / 格点系统 / 非线性Schrö / dinger方程

Key words

exponential attractor / lattice systems / nonlinear Schrö / dinger equations

引用本文

导出引用
赵才地, 周盛凡. 格点系统存在指数吸引子的充分条件及应用. 数学学报, 2010, 53(2): 233-242 https://doi.org/10.12386/A2010sxxb0029
Cai Di ZHAO, Sheng Fan ZHOU. Sufficient Conditions for the Existence of Exponential Attractors for Lattice Systems and Applications. Acta Mathematica Sinica, Chinese Series, 2010, 53(2): 233-242 https://doi.org/10.12386/A2010sxxb0029

参考文献



[1] Chow S. N., Paret J. M., Pattern formation and spatial chaos in lattice dynamical systems, IEEE Trans. Circuits Systems, 1995, 42: 746--751.



[2] Erneux T., Nicolis G., Propagating waves in discrete bistable reaction diffusion systems, Physica D, 1993, 67: 237--244.



[3] Fabiny L., Colet P., Roy R., Coherence and phase dynamics of spatially coupled solid-state lasers, Phys. Rev. A, 1993, 47: 4287--4296.



[4] Hillert M., A solid-solution model for inhomogeneous systems, Acta Metall., 1961, 9: 525--535.



[5] Keener J. P., Propagation and its failure in coupled systems of discrete excitable cells, SIAM J. Appl. Math., 1987, 47: 556--572.



[6] Chow S. N., Lattice Dynamical Systems, in "Dynamical Systems", 1--102, Lecture Notes in Math., 1822, Berlin: Springer, 2003.



[7] Bates P. W., Lu K., Wang B., Attractors for lattice dynamical systems, Internat J. Bifurcation and Choas, 2001, 11(1): 143--153.



[8] Karachalios N. I., Yannacopoulos A. N., Gloabl existence and compact attractors for the discrete nonlinear Schrödinger equation, J. Differential Equations, 2005, 217: 88--123.



[9] Lv Y., Sun J., Dynamical behavior for stochastic lattice systems, Chaos, Solitons and Fractals, 2006, 27: 1080--1090.



[10] Zhou S., Attractors for second order lattice dynamical systems, J. Differential Equations, 2002, 179: 605--624.



[11] Zhou S., Attractors for first order dissipative lattice dynamical systems, Physica D, 2003, 178: 51--61.



[12] Zhou S., Attractors and approximations for lattice dynamical systems, J. Differential Equations, 2004, 200: 342--368.



[13] Zhou S., Shi W., Attractors and dimension of dissipative lattice systems, J. Differential Equations, 2006, 224: 172--204.



[14] Zhou S., Zhao C., Wang Y., Finite dimensionality and upper semicontinuity of compact kernel sections of non-autonomous lattice systems, Dis. Con. Dyn. Sys., 2008, 21: 1259--1277.



[15] Zhao C., Zhou S., Attractors of retarded first order lattice systems, Nonlinearity, 2007, 20: 1987--2006.



[16] Zhao C., Zhou S., Compact uniform attractors for dissipative lattice dynamical systems with delays, Dis. Con. Dyn. Sys., 2008, 21: 643--663.



[17] Zhao C., Zhou S., Compact kernel sections for nonautonomous Klein-Gordon-Schrödinger equations on infinite lattices, J. Math. Anal. Appl., 2007, 332: 32--56.



[18] Zhao C., Zhou S., Compact kernel sections of long-wave-short-wave resonance equations on infinite lattices, Nonl. Anal., 2008, 68: 652--670.



[19] Zhao C., Zhou S., Limit behavior of global attractors for the complex Ginzburg-Landau equation on infinite lattices, Applied Math. Lett., 2008, 21: 628--635.



[20] Zhao C., Zhou S., Sufficient conditions for the existence of global random attractors for stochastic lattice dynamical systems and applications, J. Math. Anal. Appl., 2009, 354: 78--95.



[21] Babin A. V., Vishik M. I., Attractors of Evolution Equations, Amsterdam: North-Holland, 1992.



[22] Chepyzhov V. V., Vishik M. I., Attractors for Equations of Mathematical Physics, AMS Colloquium Publications, 49. AMS, Providence, RI., 2002.



[23] Hale J. K., Asymptotic Behavior of Dissipative Systems, AMS, Providence, RI. 1988.



[24] Ladyzhenskaya O., Attractors for Semigroups and Evolution Equations, Cambridge: Cambridge University Press, 1991.



[25] Temam R., Infinite Dimensional Dynamical Systems in Mechanics and Physics, Berlin: Springer, 2nd ed., 1997.



[26] Chen G., Pu Z., Wei Y., Exponential attractor of KdV type equation on unbounded domain R, Acta Mathematica Sinica, 2004, 3: 27--34.



[27] Chen G., Pu Z., Zhang J., Exponential attractor for the nonlinear strain wave equation coulped with nonlinear Schrodinger equations on unbounded domains R2, Acta Mathematicae Applicatae Sinica, 2005, 28: 517--526 (in Chinese).



[28] Du X., Dai Z., Exponential attractors for the coupled systems of the strain wave equation, Acta Mathematicae Applicatae Sinica, 2001, 24: 214--220 (in Chinese).



[29] Dai Z., Ma D., Exponential attractors of the nonlinear wave equations, Chinese Science Bulletin, 1998, 43: 1331--1335.



[30] Dai Z., Jiang M., Exponential attractors for the Ginzburg--Landau--BBM equations, J. Math. Research Exposition, 2001, 21: 317--322 (in Chinese).



[31] Dung L., Nicolaenko B., Exponential attractors in Banach spaces, J. Dyn. Diff. Eqs., 2001, 13: 791--806.



[32] Eden A., Foias C., Kalantarov V., A remark on two constructions of exponential attractors for α-contractions, J. Dyn. Diff. Eqs., 1998, 10: 37--45.



[33] Eden A., Foias C., Nicolaenko B., Temam R., "Exponential Attractors for Dissipative Evolution Equation", Paris: Research in Applied Mathematics 37, Masson/John Wiley co-publication, 1994.



[34] Shang Y., Guo B., Exponential attractor for the generalized symmetric regularized long wave equation with damping term, Applied Mathematics and Mechanics, 2005, 26: 283--291.



[35] Abdallah A. Y., Exponential attractors for first-order lattice dynamical systems, J. Math. Anal. Appl., 2008, 339: 217--224.



[36] Fan X., Exponential attractors for a first-order dissipative lattice dynamical systems, J. Appl. Math., 2008, 2008: 1--8.



[37] Babin A. V., Nicolaenko B., Exponential attrctors for reaction diffusion equations in unbounded domains, J. Dyna. Diff. Eqs., 1995, 7: 567--590.



[38] Lü S., Lu Q., Exponential attractor of the 3D derivative Ginzburg-Landau equation, Acta Mathematica Sinica, English Series, 2008, 24: 809--828.

基金

国家自然科学基金资助项目(10901121,10826091,10771139);浙江省自然科学基金资助项目(Y6080077);温州大学青年基金项目(2008YYLQ01)

PDF(516 KB)

Accesses

Citation

Detail

段落导航
相关文章

/