退化抛物型方程弱解的存在性
On the Existence of Weak Solutions to a Parabolic Equation of Degenerate Type for Semiconductors
退化抛物型方程 / 弱解 / 收敛性 / Gronwall引理 / 存在性 {{custom_keyword}} /
parabolic equations of degenerate type / the weak solution / the convergence / Gronwall’s lemma / existence {{custom_keyword}} /
[1] Courant R., Friedrichs K. O., Supersonic Flow and Shock Waves, New York: Interscience, 1967.
[2] Zhou W. H., Existence of solutions on a Quasilinear degenerate system arising in semiconductors theory, Acta Mathematicae Applicatae Sinica, 2007, 30(1): 176--189 (in Chinese).
[3] Wu B., On the Existence and Uniqueness of Weak Solutions to a Degenerate Drift-diffusion Model for Semiconductors: {Submitted for the Degree of Master of Applied Mathematics}, Nanjing: Dept. of Appl. Math., Southeast Univ., 2005 (in Chinese).
[4] Groger K., Rehberg J., Resolvent estimates in
[5] Diaz J. I., Galiano G., Jungel A., On a quasilinear degenerate system arising in semiconductors theory, Nonlinear Analysis: Real World Applications, 2001, 2: 305--336.
[6] Guan P., Fan J., On the global existence and uniqueness of weak solutions to the nonstationary semiconductor equations, Applied Mathematics and Computation, 2000, 114: 125--133.
[7] Gajewski H., On existence, uniqueness and asymptotic behavior of solutions of the basic equations for carrier transport in semiconductors, Zamm. Z. Angew. Math. Mech, 1985, 65(2): 101--108.
[8] Gajewski H., Gröger K., On the basic equations for carrier transport in semiconductor, Math. Anal., 1986, 113: 12--35.
[9] Groger K., A W1, p-estimate for solutions to mixed boundary value problems for second order elliptic differential equations, Math. Ann., 1989, 283: 679--687.
[10] Groger K., Initial boundary value problems from semiconductor device theory, Z. Angew. Math. Mech., 1987, 67(8): 345--355.
淮海工学院科研课题资助项目(Z2007024)
/
〈 | 〉 |