
内交换p群的中心扩张 (II)
The Central Extension of Inner Abelian p-Groups (II)
中心扩张 / 循环p群 / 内交换p群 {{custom_keyword}} /
central extensions / cyclic p-groups / inner abelian p-groups {{custom_keyword}} /
[1] Robinson D. J. S., A Course in the Theory of Groups, New York: Springer-Verlag, 1980.
[2] Suzuki M., Group Theory I., New York: Springer-Verlag, 1982.
[3] Xu M. Y., Qu H. P., Zhang Q. H., Finite p-groups all of whose subgroups of index p2 are metacyclic, to appear in Acta Math. Sci.
[4] Zhang Q. H., Guo X. Q., Qu H. P., Xu M. Y., Finite groups which have many normal subgroups, J. Korean Math. Soc., 2009, 46(6): 1165--1178.
[5] Zhang Q. H., Li L. L., Xu M. Y., Finite p-groups all of whose quotient groups are abelian or inner-abelian, to appear in Comm. Alg.
[6] Miller G. A., Moreno H. C., Non-abelian groups in which every subgroup is abelian, Trans. Amer. Math. Soc., 1903, 4: 398--404.
[7] Rédei L., Das schiefe product in der Gruppentheorie, Comm. Math. Helv., 1947, 20: 225--267.
[8] Berkovich Y., Janko Z., Groups of Prime Power Order, Volume 1, Berlin, New York: Walter de Gruyter, 2004.
[9] Li L. L., Qu H. P., Chen G. Y., The central extension of inner abelian p-groups (I), Acta Mathematica Sinica, Chinese Series, 2010, 53(4): 675--684.
[10] Xu M. Y., Introduction to Finite Groups (I, II), Beijing: Beijing Science Press, 1999.
[11] Chen C. G., Inner Σ-groups, Outer Σ-groups and Minimal Non-Σ-groups, Chongqing: Southwest China Normal University Press, 1988.
[12] Xu M. Y., Beijing Finite p-Groups, Beijing: Peking University Press, 2009.
[13] An L. J., Finite p-Groups all of Whose Non-Abelian Proper Subgroups are Generated by Two Elements, Xi'an: Shanxi Normal University Master's Degree Paper, 2006.
国家自然科学基金资助项目(10671114);山西省自然科学基金(2008012001)和山西省回国留学人员科研项目([2007]13-56)资助
/
〈 |
|
〉 |