
方程Δg-aKg=0无正函数解的充分条件
A Sufficient Condition of Nonexistence of Positive Solution of Equation Δg-aKg=0
Δ-q算子 / 共形度量 / 高斯曲率 / Laplace算子的第一特征值 {{custom_keyword}} /
Δ-q operator / conformal metric / Gauss curvature / the first eigenvalue of the Laplace operator {{custom_keyword}} /
[1] Fischer-Colbrie D., Schoen R., The structure of complete stable minimal surfaces in 3-manifolds of non-negative scalar curvature, Comm. Pure. Appl. Math., 1980, 33: 199--211.
[2] Glazman I. M., Direct Methods of Qualitative Spectral Analysis of Singular Differential Operators, Jerusalem: Israel Program for Scientific Translations, 1965.
[3] Hobson E. W., Spherical and Ellipsoidal Harmonics, New York: Chelsea, 1955.
[4] Wu H. X., Shen C. L., Yu Y. L., An Introduction to Riemannian Geometry, Beijing: Beijing University Press, 2000 (in Chinese).
[5] Bai Z. G., Shen Y. B., Shui N. X., Guo X. Y., An Introduction to Riemannian Geometry, Beijing: Higher Education Press, 1992 (in Chinese).
[6] Wang P. H., Shen C. L., A global curvature pinching result of the first eigenvalue of Laplacian, Acta Mathematica Sinica, Chinese Series, 2008, 51(1): 115--122.
[7] Gilbarg D., Trudinger N. S., Elliptic Partial Differential Equations of Second Order, New York: Springer-Verlag, 1977.
/
〈 |
|
〉 |