
赋范空间单位球之间的1-Lipshcitz算子
1-Lipschitz Maps Between Unit Balls of Normed Spaces
1-Lipshcitz / 等距 / DOPP {{custom_keyword}} /
[1] Freudenthal H., Hurewicz W., Dehnungen, Verkurzungen, Isometrien, Fund. Math., 1936, 26: 120--122.
[2] Rassias Th. M., ?emrl P., On the Mazur-Ulam theorem and the Aleksandrov problem for unit distance preserving mappings, Proc. Amer. Math. Soc., 1993, 118: 919--925.
[3] Tingley D., Isometries of the unit spheres, Geom. Dedicata, 1987, 22: 371--378.
[4] An G. M., Isometries on unit sphere of (lβn), J. Math. Anal. Appl., 2005, 301: 249--254.
[5] Ding G. G., The isometric extension problem in the unit spheres of lp(Γ), (p>1) type spaces, Sci. China Ser. A, 2003, 46(3): 333--338.
[6] Ding G. G., The representation theorem of onto isometric mappings between two unit spheres of l1(Γ) type spaces and the application on isometric extension problem, Acta Mathematica Sinica, English Series, 2004, 20(6): 1089--1094.
[7] Ding G. G., On the extension of isometries between unit spheres of E and C(Ω), Acta Mathematica Sinica, English Series, 2003, 19(4): 793--800.
[8] Ding G. G., The isometric extension of the into mapping from a L∞(Γ)-type space to some normed space E, Illinois J. Math., 2007, 51(2): 445--453.
[9] Ding G. G., The 1-Lipschitz mapping between the unit spheres of two Hilbert spaces can be extended to a real linear linear isometry of the whole space, Science in China, 2002, 45(4): 479--483.
[10] Fang X. N., On extension of 1-Lipschitz mapping between two unit spheres of lp(Γ)-type spaces (0J. Math. Res. Exposition, 2009, 29(4): 687--692.
[11] Liu R., On extension of isometries between the unit spheres of L∞-type space and some Banach space E, J. Math. Anal. Appl., 2007, 333: 959--970.
[12] Tan D. N., A note on extension of isometries on unit sphere of ALp-spaces, Acta Mathematica Sinica, Chinese Series, 2009, 52(4): 781--784.
[13] Tan D. N., Nonexpansive mappings on the unit spheres of some Banach spaces, Bull. Aust. Math. Soc., 2009, 80: 139--146.
[14] Tan D. N., Nonexpansive mappings and expansive mappings on the unit spheres of some F-spaces, Bull. Aust. Math. Soc., in press.
[15] Yang X. Z., On extension of isometries between unit spheres of Lp(μ) and Lp(υ, H)\, (1<p≠2, H is a Hilbert space), J. Math. Anal. Appl., 2006, 323: 985--992.
[16] Mankiewicz P., On extension of isometries in normed linear spaces, Bull. Acad. Polon. Sci., 1972, 20: 367--371.
[17] Mazur S., Ulam S., Sur les transformations isométriques d'espaces vectoriels normés, C. R. Acad. Sci. Paris, 1932, 194: 946--948.
[18] Fleming R. J., Jameson J. E., Isometries on Banach Spaces: Function Spaces, Boca Raton: Chapman and Hall, CRC, 2003.
[19] Ma Y. M., The Aleksandrov problem for unit distance preserving mapping, Acta Math. Sci. Ser. B Engl. Ed., 2000, 20(3): 359--364.
[20] Baker J. A., Isometries in normed spaces, Amer. Math. Monthly, 1971, 78: 655--658.
国家自然科学基金资助项目(10871101);高校博士点基金资助项目
/
〈 |
|
〉 |