自相似集的质量分布原理与Hausdorff测度及其应用
On the Mass Distribution Principle and Hausdorff Measure for the Self-Similar Sets and Applications
Hausdorff测度与Hausdorff测度维数 / 自相似集 / 开集条件 {{custom_keyword}} /
Hausdorff measure and Hausdorff dimension / self-similar sets / open set condition {{custom_keyword}} /
[1] Hutchinson J. E., Fractals and self-similarity, Indiana Univ. Math. J., 1981, 30: 713--747.
[2] Falconer K. J., Fractal Geometry--Mathematical Foundations and Applications, New York: John and Sons, 1990.
[3] Stricharts R. S., Exact Hausdorff measure and intervals of maximum density for Cantor sets, Trans. Amer. Math. Soc., 1999, 351: 3725--3741.
[4] Zhou Z., Hausdorff measure of self-similar set--the Koch curve, Sci. China Ser. A, 1998, 41: 723--728.
[5] Banat C., Graf S., Self-similar sets 7, A characterization of self-similar fractals with positive Hausdorff measure, Proc. Amer. Math. Soc., 1992, 114(4): 995--1001.
[6] Walters P., An Introduction to Ergodic theory, New York: Springer-Verlag, 1982.
[7] Federer H., Geometric Measure Theory, New York: Springer-Verlag, 1969.
[8] Jia B., Xu S., An answer to a conjecture on Self-similar sets, Anal. Theory Appl., 2007, 44(1): 23--27.
[9] Zhou Z., Wu M., The Hausdorff measure of a Sierpinski carpet, Sci. China Ser. A, 1999, 47: 673--680.
[10] Wu M., The Hausdorff measure of some Sierpinski carpets, Chaos, Solitons and Fractals, 2005, 24: 717--731.
[11] Xiong Y., Zhou J., The Hausdorff measure of a class of Sierpinski carpets, J. Math. Anal. Appl., 2005, 305: 121--129.
[12] Falconer K. J., The Geometry of Fractal Set, Cambridge: Cambridge University Press, 1985.
国家自然科学基金资助项目(10961003;10971236)
/
〈 | 〉 |