海森堡群上薛定谔算子的黎斯位势的某些性质

江寅生

数学学报 ›› 2010, Vol. 53 ›› Issue (4) : 785-794.

PDF(440 KB)
PDF(440 KB)
数学学报 ›› 2010, Vol. 53 ›› Issue (4) : 785-794. DOI: 10.12386/A2010sxxb0088
论文

海森堡群上薛定谔算子的黎斯位势的某些性质

    江寅生
作者信息 +

Some Properties of Riesz Potential Associated to Schrödinger Operator on the Heisenberg Groups

    Yin Sheng JIANG
Author information +
文章历史 +

摘要

L=-ΔHn+V是Heisenberg群Hn上的Schrödinger算子, 其中ΔHn为Hn 上的次Laplacian, 为满足逆Hölder不等式的非负函数.本文研究Hn上Riesz位势ILα=L-α/2在Campanato型空间ΛβL和Hardy型空间HpL上的某些性质.  

Abstract

Let L=-ΔHn+V be the Schrödinger operator on the Heisenberg groups Hn where ΔHn is the sub-Laplacian on Hn and is a nonnegative function satisfying the reverse Hölder inequality. In this article, the author investigates some properties of the Riesz potential ILα=L-α/2 on the Campanato-type spaces ΛβL and the Hardy-type spaces HpL on Hn.  

关键词

Schrö / dinger 算子 / Riesz 位势 / Heisenberg 群

Key words

Riesz potential / Heisenberg group / Schrö / dinger operator

引用本文

导出引用
江寅生. 海森堡群上薛定谔算子的黎斯位势的某些性质. 数学学报, 2010, 53(4): 785-794 https://doi.org/10.12386/A2010sxxb0088
Yin Sheng JIANG. Some Properties of Riesz Potential Associated to Schrödinger Operator on the Heisenberg Groups. Acta Mathematica Sinica, Chinese Series, 2010, 53(4): 785-794 https://doi.org/10.12386/A2010sxxb0088

参考文献



[1] Folland G. B., Stein E. M., Hardy Spaces on Homogeneous Groups. Math. Notes 28, Princeton, New Jersey: Princeton Univ. Press and Univ. of Tokyo Press, 1982.



[2] Stein E. M., Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton, New Jersey: Princeton Univ. Press, 1993.



[3] Yang D., Yang Do., Zhou Y., Localized Morrey--Campnato spaces on measure spaces and applications to Schrödinger operators, arXiv: 0903.4576, 2009.



[4] Lin C., Liu H., The BMO-type Space BMO Associated with Schrödinger Operators on Heisenberg Group, Submitted.



[5] Dziubański J., Note on H1 related to degenrate Schrödinger operators, Illinois J. Math., 2005, 49: 1271--1297.



[6] Dziubański J., Garrigós G., et al, BMO spaces related to Schrödinger operators with potentials satisfying reverse Hölder inequality, Math. Z., 2005, 249: 329--356.



[7] Dziubański J., Zienkiewicz J., Hp spaces associated with Schrödinger operators with potentials from reverse Hölder classes, Colloq. Math., 2003, 98: 5--38.



[8] Huang J., Liu H., Littlewood-Paley Theory and Hardy Spaces Related to Schrödinger Operators, Submitted.



[9] Lin C., Liu H., Liu Y., The Hardy Space H1L Associated with Schrödinger Operators on Heisenberg Group, Submitted.



[10] Taibleson M. H., Weiss G., The molecular characterization of certain Hardy spaces, Astérisque, 1980, 77: 67--149.



[11] Yang D., Yang Do., Zhou Y., Endpoint properties of localized Riesz transforms and fractional integrals associated to Schrödinger operators, Potential Anal., 2009, 30: 271--300.



[12] Jiang Y., Endpoint Estimate for Fractional Integral Associated to Schrödinger Operators on the Heisenberg Groups, Submitted.



[13] Lu G., A Fefferman-Phong type inequality for degenerate vector field and applications, Panamer. Math. J., 1996, 6: 37--57.



[14] Goldstein J. A., Semigroups of Linear Operators ang Applications, New York: Oxford Univ. Press, 1985.



[15] Jerison D., Sanchez-Calle A., Estimates for the heat kernal for sum of squares of vector fields, Indiana Univ. Math. J., 1986, 35: 835--854.

基金

国家自然科学基金资助项目(10861010)

PDF(440 KB)

Accesses

Citation

Detail

段落导航
相关文章

/