Using Pell equations on , we give a new proof of the well-known fact that if the ideal class number of a real quadratic function field equals to 1, then D must be P or QR, where P,Q,R∈ are monic and irreducible, and Q,R have odd degrees.
Su HU, Zong Wen YU.
A Note on the Ideal Class Number Problem for Quadratic Function Fields. Acta Mathematica Sinica, Chinese Series, 2010, 53(1): 135-140 https://doi.org/10.12386/A2010sxxb0018
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Baker A., A remark on the class number of quadratic fields, Bull. London Math. Soc., 1969, 1(1): 98--102.
[2] Stark H., A complete determination of the complex quadratic fields with class number 1, J. Michigan Math., 1967, 14(1): 1--27.
[3] Hasse H., Uber mehrklassige, aber eigen schlechtige reell-quadratische Zahlkorper, Elem. Math., 1965, 20(3): 49--59.
[4] Chowla S., Friedlander J., Some remarks on L-functions and class number, Acta Arith., 1975/76, 28: 413--417.
[5] Chowla S., Friedlander J., Class number and quadratic residues, Glasgow Math. J., 1976, 17(1): 47--52.
[6] Lu H., The divisibility of the class number of some real quadratic fields, Acta Mathematica Sinica, Chinese Series, 1985, 28(6): 756--762.
[7] Molin R., On the divisibility of Diophantine equations and the nontriviality of the class numbers of related real quadratic fields of Richaud-degert type, Nagaya Math. J., 1987, 105: 39--47.
[8] Molin R., Diophantine equations and class numbers, J. Number Theory, 1986, 24(1): 7--19.
[9] Molin R., Necessary and sufficient conditions for the class number of a real quadratic field to be one, and a conjecture of S. Chowla, Proc. Amer. Math. Soc., 1988, 102(1): 17--21.
[10] Molin R., Williams H., A conjecture of S. Chowla via the generlized Riemann Hypothesis, Proc. Amer. Math. Soc., 1988, 102(4): 794--796.
[11] Grytczuk A., Grytczuk J., Some results connected with the class number problem in real quadratic fields, Acta Mathematica Sinica, English Series, 2005, 21(5): 1107--1112.
[12] Zhang X., Ten formulae of type Ankeny--Artin--Chowla for class numbers of general cyclic quartic fields, Sci. China Ser. A, 1989, 32(4): 417--428.
[13] Zhang X., Washington L. C., Ideal class groups and their subgroups of real quadratic fields, Sci. China Ser. A, 1997, 40(9): 909--916.
[14] Lu H., On Gauss Conjecture of Quadratic Fields, Shanghai: Shanghai Scientific and Technical Publishers, 1994 (in Chinese).
[15] Artin E., Quadratische Korper im Gebiete der hoheren Kongruenzen, I, Math. Zeit., 1924, 19(1): 153--206.
[16] Friesen C., Continued fraction characterization and generic ideals in real quadratic function fields. Proceedings of the workshop at the Ohio State University, June 17--26, 1991, pp. 465--474. Editors: D. Goss, D. R. Hayes, M. I. Rosen.
[17] Zhang X., Determination of solutions and solvabilities of Diophantine equations and quadratic fields, Algebraic Geometry and Algebraic Number Theory, Feng K. and Li K. ed. 189--199.
[18] Zhang X., Equations in real quadratic fields and semisimple and minimal continued fractions, Kexue Tongbao, 1995, 40(10): 865--867 (in Chinese).
[19] Zhang X., Class groups of certain real quadratic fields, J. China Univ. Sci. Tech., 1992, 22(4): 393--395.
[20] Wang K., Zhang X., Subgroups of ideal class groups of real quadratic function fields, Science in China, Ser. A, 2003, 46(3): 339--345.
[21] Wang K., Zhang X., Bounds of ideal class numbers of real quadratic function fields, Acta mathematica Sinica, English Series, 2004, 20(1): 169--174.
[22] Zhang X., Ambiguous classes and 2-rank of class groups of quadratic function fields, J. Chinese Univ. Sci. Tec., 1987, 17(4): 425--431.
[23] Rosen M., Number Theory in Function Fields, Graduate texts in mathematics 210, New York: Spring-verlag, 2002.