余拟三角双单子

代瑞香, 刘超, 王顶国

数学学报 ›› 2010, Vol. 53 ›› Issue (5) : 1035-1040.

PDF(373 KB)
PDF(373 KB)
数学学报 ›› 2010, Vol. 53 ›› Issue (5) : 1035-1040. DOI: 10.12386/A2010sxxb0115
论文

余拟三角双单子

    代瑞香1, 刘超1, 王顶国2
作者信息 +

Coquasitriangular Bimonads

    Rui Xiang DAI1, Chao LIU1, Ding Guo WANG2
Author information +
文章历史 +

摘要

给出了余卷积、余中心元、余扭元、余拟三角双单子的定义,并在单子T的线性型和T-模范畴的辫子之间及单子T的余扭元和T-模范畴的扭元之间建立了双射.

 

Abstract

In this paper coconvolution product, linear form, cocentral elements, cotwist, coquasitriangular bimonad are defined. Then a bijection between linear forms of T and braidings C of T-module categories and a bijection between cotwists for T and twists on T-module categories are given.

 

关键词

单子 / 双单子 / 余拟三角双单子

Key words

monads / bimonads / coquasitriangular bimonads

引用本文

导出引用
代瑞香, 刘超, 王顶国. 余拟三角双单子. 数学学报, 2010, 53(5): 1035-1040 https://doi.org/10.12386/A2010sxxb0115
Rui Xiang DAI, Chao LIU, Ding Guo WANG. Coquasitriangular Bimonads. Acta Mathematica Sinica, Chinese Series, 2010, 53(5): 1035-1040 https://doi.org/10.12386/A2010sxxb0115

参考文献


[1] Mac Lane S., Categories for the Working Mathematician, Graduate Texts in Mathmatics, 5, New York: Springer-Verlag, 1971.

[2] Mac Lane S., Homologie des Anneaux et des Modules, Louvain: Colloque de Topologie Algébrique, 1956, 55--80.

[3] Godement R., Théorie des Faisceaux, Paris: Hermann, 1958.

[4] Huber P. J., Homotopy theory in general categories, Math. Ann., 1961, 144: 361--385.

[5] Barr M., Beck J., Acyclic Models and Triples, Proceedings of the Conference on Categorical Algebra, La Jolla, 1965: 336--344; New York: Springer, 1966.

[6] Blackwell R., KellyG M., Power A. J., Two-dimensional monad theory, J. Pure Appl. Algebra, 1989, 59: 1--41.

[7] McCrudden, P., Opmonoidal monad, Theory Appl. Categ., 2002, 10: 469--485.

[8] Moerdijk I., Monads on tensor categories, J. Pure Appl. Algebra, 2002, 168: 189--208.

[9] Wang D. G., Dai R. X., Entwining structures of monads and comonads, Acta Mathematica Sinica, Chinese Series, 2008, 51(5): 927--932.

[10] Bruguieres A., Virelizier A., Hopf Monad, Adv. Math., 2007, 215(2): 679--733.

[11] Brzeziński T., Wisbauer R., Corings and Comodules, Cambrige: Cambrige University Press, 2003.

基金

国家自然科学基金资助项目(10671016);教育部留学回国人员科研启动基金资助项目

PDF(373 KB)

202

Accesses

0

Citation

Detail

段落导航
相关文章

/