
余拟三角双单子
Coquasitriangular Bimonads
单子 / 双单子 / 余拟三角双单子 {{custom_keyword}} /
monads / bimonads / coquasitriangular bimonads {{custom_keyword}} /
[1] Mac Lane S., Categories for the Working Mathematician, Graduate Texts in Mathmatics, 5, New York: Springer-Verlag, 1971.
[2] Mac Lane S., Homologie des Anneaux et des Modules, Louvain: Colloque de Topologie Algébrique, 1956, 55--80.
[3] Godement R., Théorie des Faisceaux, Paris: Hermann, 1958.
[4] Huber P. J., Homotopy theory in general categories, Math. Ann., 1961, 144: 361--385.
[5] Barr M., Beck J., Acyclic Models and Triples, Proceedings of the Conference on Categorical Algebra, La Jolla, 1965: 336--344; New York: Springer, 1966.
[6] Blackwell R., KellyG M., Power A. J., Two-dimensional monad theory, J. Pure Appl. Algebra, 1989, 59: 1--41.
[7] McCrudden, P., Opmonoidal monad, Theory Appl. Categ., 2002, 10: 469--485.
[8] Moerdijk I., Monads on tensor categories, J. Pure Appl. Algebra, 2002, 168: 189--208.
[9] Wang D. G., Dai R. X., Entwining structures of monads and comonads, Acta Mathematica Sinica, Chinese Series, 2008, 51(5): 927--932.
[10] Bruguieres A., Virelizier A., Hopf Monad, Adv. Math., 2007, 215(2): 679--733.
[11] Brzeziński T., Wisbauer R., Corings and Comodules, Cambrige: Cambrige University Press, 2003.
国家自然科学基金资助项目(10671016);教育部留学回国人员科研启动基金资助项目
/
〈 |
|
〉 |